Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latm4 Structured version   Visualization version   GIF version

Theorem latm4 37174
Description: Rearrangement of lattice meet of 4 classes. (in4 4156 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latm4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latm4
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ OL)
2 simp2r 1198 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
3 simp3l 1199 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
4 simp3r 1200 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
5 olmass.b . . . . 5 𝐵 = (Base‘𝐾)
6 olmass.m . . . . 5 = (meet‘𝐾)
75, 6latm12 37171 . . . 4 ((𝐾 ∈ OL ∧ (𝑌𝐵𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
81, 2, 3, 4, 7syl13anc 1370 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
98oveq2d 7271 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 (𝑌 (𝑍 𝑊))) = (𝑋 (𝑍 (𝑌 𝑊))))
10 simp2l 1197 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
11 ollat 37154 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ Lat)
12113ad2ant1 1131 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
135, 6latmcl 18073 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵) → (𝑍 𝑊) ∈ 𝐵)
1412, 3, 4, 13syl3anc 1369 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊) ∈ 𝐵)
155, 6latmassOLD 37170 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑍 𝑊) ∈ 𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
161, 10, 2, 14, 15syl13anc 1370 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
175, 6latmcl 18073 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
1812, 2, 4, 17syl3anc 1369 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6latmassOLD 37170 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
201, 10, 3, 18, 19syl13anc 1370 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
219, 16, 203eqtr4d 2788 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  meetcmee 17945  Latclat 18064  OLcol 37115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-lat 18065  df-oposet 37117  df-ol 37119
This theorem is referenced by:  latmmdiN  37175  latmmdir  37176
  Copyright terms: Public domain W3C validator