![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > latm32 | Structured version Visualization version GIF version |
Description: A rearrangement of lattice meet. (in12 4219 analog.) (Contributed by NM, 13-Nov-2012.) |
Ref | Expression |
---|---|
olmass.b | β’ π΅ = (BaseβπΎ) |
olmass.m | β’ β§ = (meetβπΎ) |
Ref | Expression |
---|---|
latm32 | β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β§ π) β§ π) = ((π β§ π) β§ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 38071 | . . . . 5 β’ (πΎ β OL β πΎ β Lat) | |
2 | olmass.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
3 | olmass.m | . . . . . 6 β’ β§ = (meetβπΎ) | |
4 | 2, 3 | latmcom 18412 | . . . . 5 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β§ π) = (π β§ π)) |
5 | 1, 4 | syl3an1 1163 | . . . 4 β’ ((πΎ β OL β§ π β π΅ β§ π β π΅) β (π β§ π) = (π β§ π)) |
6 | 5 | 3adant3r1 1182 | . . 3 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β§ π) = (π β§ π)) |
7 | 6 | oveq2d 7421 | . 2 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β§ (π β§ π)) = (π β§ (π β§ π))) |
8 | 2, 3 | latmassOLD 38087 | . 2 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β§ π) β§ π) = (π β§ (π β§ π))) |
9 | simpl 483 | . . 3 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β πΎ β OL) | |
10 | simpr1 1194 | . . 3 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
11 | simpr3 1196 | . . 3 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
12 | simpr2 1195 | . . 3 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
13 | 2, 3 | latmassOLD 38087 | . . 3 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β§ π) β§ π) = (π β§ (π β§ π))) |
14 | 9, 10, 11, 12, 13 | syl13anc 1372 | . 2 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β§ π) β§ π) = (π β§ (π β§ π))) |
15 | 7, 8, 14 | 3eqtr4d 2782 | 1 β’ ((πΎ β OL β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β§ π) β§ π) = ((π β§ π) β§ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 meetcmee 18261 Latclat 18380 OLcol 38032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-lat 18381 df-oposet 38034 df-ol 38036 |
This theorem is referenced by: cdleme20d 39171 dia2dimlem3 39925 |
Copyright terms: Public domain | W3C validator |