Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllat Structured version   Visualization version   GIF version

Theorem omllat 39181
Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omllat (𝐾 ∈ OML → 𝐾 ∈ Lat)

Proof of Theorem omllat
StepHypRef Expression
1 omlol 39179 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 ollat 39152 . 2 (𝐾 ∈ OL → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Latclat 18426  OLcol 39113  OMLcoml 39114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-iota 6480  df-fv 6535  df-ov 7402  df-ol 39117  df-oml 39118
This theorem is referenced by:  omllaw2N  39183  omllaw4  39185  omllaw5N  39186  cmtcomlemN  39187  cmt2N  39189  cmtbr2N  39192  cmtbr3N  39193  cmtbr4N  39194  lecmtN  39195  cmtidN  39196  omlfh1N  39197  omlfh3N  39198  omlmod1i2N  39199  omlspjN  39200
  Copyright terms: Public domain W3C validator