Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllat Structured version   Visualization version   GIF version

Theorem omllat 39220
Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omllat (𝐾 ∈ OML → 𝐾 ∈ Lat)

Proof of Theorem omllat
StepHypRef Expression
1 omlol 39218 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 ollat 39191 . 2 (𝐾 ∈ OL → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Latclat 18355  OLcol 39152  OMLcoml 39153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-ol 39156  df-oml 39157
This theorem is referenced by:  omllaw2N  39222  omllaw4  39224  omllaw5N  39225  cmtcomlemN  39226  cmt2N  39228  cmtbr2N  39231  cmtbr3N  39232  cmtbr4N  39233  lecmtN  39234  cmtidN  39235  omlfh1N  39236  omlfh3N  39237  omlmod1i2N  39238  omlspjN  39239
  Copyright terms: Public domain W3C validator