Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllat Structured version   Visualization version   GIF version

Theorem omllat 39198
Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omllat (𝐾 ∈ OML → 𝐾 ∈ Lat)

Proof of Theorem omllat
StepHypRef Expression
1 omlol 39196 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 ollat 39169 . 2 (𝐾 ∈ OL → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Latclat 18501  OLcol 39130  OMLcoml 39131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-ol 39134  df-oml 39135
This theorem is referenced by:  omllaw2N  39200  omllaw4  39202  omllaw5N  39203  cmtcomlemN  39204  cmt2N  39206  cmtbr2N  39209  cmtbr3N  39210  cmtbr4N  39211  lecmtN  39212  cmtidN  39213  omlfh1N  39214  omlfh3N  39215  omlmod1i2N  39216  omlspjN  39217
  Copyright terms: Public domain W3C validator