| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllat | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omllat | ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39258 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | ollat 39231 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18441 OLcol 39192 OMLcoml 39193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-ol 39196 df-oml 39197 |
| This theorem is referenced by: omllaw2N 39262 omllaw4 39264 omllaw5N 39265 cmtcomlemN 39266 cmt2N 39268 cmtbr2N 39271 cmtbr3N 39272 cmtbr4N 39273 lecmtN 39274 cmtidN 39275 omlfh1N 39276 omlfh3N 39277 omlmod1i2N 39278 omlspjN 39279 |
| Copyright terms: Public domain | W3C validator |