Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllat Structured version   Visualization version   GIF version

Theorem omllat 39280
Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omllat (𝐾 ∈ OML → 𝐾 ∈ Lat)

Proof of Theorem omllat
StepHypRef Expression
1 omlol 39278 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 ollat 39251 . 2 (𝐾 ∈ OL → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Latclat 18334  OLcol 39212  OMLcoml 39213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-ol 39216  df-oml 39217
This theorem is referenced by:  omllaw2N  39282  omllaw4  39284  omllaw5N  39285  cmtcomlemN  39286  cmt2N  39288  cmtbr2N  39291  cmtbr3N  39292  cmtbr4N  39293  lecmtN  39294  cmtidN  39295  omlfh1N  39296  omlfh3N  39297  omlmod1i2N  39298  omlspjN  39299
  Copyright terms: Public domain W3C validator