Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllat Structured version   Visualization version   GIF version

Theorem omllat 39242
Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omllat (𝐾 ∈ OML → 𝐾 ∈ Lat)

Proof of Theorem omllat
StepHypRef Expression
1 omlol 39240 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 ollat 39213 . 2 (𝐾 ∈ OL → 𝐾 ∈ Lat)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Latclat 18397  OLcol 39174  OMLcoml 39175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-ol 39178  df-oml 39179
This theorem is referenced by:  omllaw2N  39244  omllaw4  39246  omllaw5N  39247  cmtcomlemN  39248  cmt2N  39250  cmtbr2N  39253  cmtbr3N  39254  cmtbr4N  39255  lecmtN  39256  cmtidN  39257  omlfh1N  39258  omlfh3N  39259  omlmod1i2N  39260  omlspjN  39261
  Copyright terms: Public domain W3C validator