| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllat | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omllat | ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39179 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | ollat 39152 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Latclat 18426 OLcol 39113 OMLcoml 39114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-ol 39117 df-oml 39118 |
| This theorem is referenced by: omllaw2N 39183 omllaw4 39185 omllaw5N 39186 cmtcomlemN 39187 cmt2N 39189 cmtbr2N 39192 cmtbr3N 39193 cmtbr4N 39194 lecmtN 39195 cmtidN 39196 omlfh1N 39197 omlfh3N 39198 omlmod1i2N 39199 omlspjN 39200 |
| Copyright terms: Public domain | W3C validator |