Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllat | Structured version Visualization version GIF version |
Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
omllat | ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlol 36850 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
2 | ollat 36823 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 Latclat 17734 OLcol 36784 OMLcoml 36785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 df-ol 36788 df-oml 36789 |
This theorem is referenced by: omllaw2N 36854 omllaw4 36856 omllaw5N 36857 cmtcomlemN 36858 cmt2N 36860 cmtbr2N 36863 cmtbr3N 36864 cmtbr4N 36865 lecmtN 36866 cmtidN 36867 omlfh1N 36868 omlfh3N 36869 omlmod1i2N 36870 omlspjN 36871 |
Copyright terms: Public domain | W3C validator |