| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllat | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omllat | ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39241 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | ollat 39214 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Latclat 18476 OLcol 39175 OMLcoml 39176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-ol 39179 df-oml 39180 |
| This theorem is referenced by: omllaw2N 39245 omllaw4 39247 omllaw5N 39248 cmtcomlemN 39249 cmt2N 39251 cmtbr2N 39254 cmtbr3N 39255 cmtbr4N 39256 lecmtN 39257 cmtidN 39258 omlfh1N 39259 omlfh3N 39260 omlmod1i2N 39261 omlspjN 39262 |
| Copyright terms: Public domain | W3C validator |