MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbi2dv Structured version   Visualization version   GIF version

Theorem opabbi2dv 5856
Description: Deduce equality of a relation and an ordered-pair class abstraction. Compare eqabdv 2863. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1 Rel 𝐴
opabbi2dv.3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
Assertion
Ref Expression
opabbi2dv (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3 Rel 𝐴
2 opabid2 5834 . . 3 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
31, 2ax-mp 5 . 2 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴
4 opabbi2dv.3 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
54opabbidv 5218 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
63, 5eqtr3id 2782 1 (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cop 4638  {copab 5214  Rel wrel 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-opab 5215  df-xp 5688  df-rel 5689
This theorem is referenced by:  recmulnq  10995  dmscut  27764  dib1dim  40670
  Copyright terms: Public domain W3C validator