MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbi2dv Structured version   Visualization version   GIF version

Theorem opabbi2dv 5747
Description: Deduce equality of a relation and an ordered-pair class abstraction. Compare abbi2dv 2876. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1 Rel 𝐴
opabbi2dv.3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
Assertion
Ref Expression
opabbi2dv (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3 Rel 𝐴
2 opabid2 5727 . . 3 (Rel 𝐴 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴)
31, 2ax-mp 5 . 2 {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = 𝐴
4 opabbi2dv.3 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝜓))
54opabbidv 5136 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ⟨𝑥, 𝑦⟩ ∈ 𝐴} = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
63, 5eqtr3id 2793 1 (𝜑𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cop 4564  {copab 5132  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  recmulnq  10651  dmscut  33932  dib1dim  39106
  Copyright terms: Public domain W3C validator