Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabbi2dv | Structured version Visualization version GIF version |
Description: Deduce equality of a relation and an ordered-pair class abstraction. Compare abbi2dv 2877. (Contributed by NM, 24-Feb-2014.) |
Ref | Expression |
---|---|
opabbi2dv.1 | ⊢ Rel 𝐴 |
opabbi2dv.3 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
opabbi2dv | ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbi2dv.1 | . . 3 ⊢ Rel 𝐴 | |
2 | opabid2 5738 | . . 3 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 |
4 | opabbi2dv.3 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) | |
5 | 4 | opabbidv 5140 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
6 | 3, 5 | eqtr3id 2792 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 〈cop 4567 {copab 5136 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: recmulnq 10720 dmscut 34005 dib1dim 39179 |
Copyright terms: Public domain | W3C validator |