![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabbi2dv | Structured version Visualization version GIF version |
Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2919. (Contributed by NM, 24-Feb-2014.) |
Ref | Expression |
---|---|
opabbi2dv.1 | ⊢ Rel 𝐴 |
opabbi2dv.3 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
opabbi2dv | ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbi2dv.1 | . . 3 ⊢ Rel 𝐴 | |
2 | opabid2 5455 | . . 3 ⊢ (Rel 𝐴 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = 𝐴 |
4 | opabbi2dv.3 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 𝜓)) | |
5 | 4 | opabbidv 4909 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 〈𝑥, 𝑦〉 ∈ 𝐴} = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
6 | 3, 5 | syl5eqr 2847 | 1 ⊢ (𝜑 → 𝐴 = {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 〈cop 4374 {copab 4905 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-opab 4906 df-xp 5318 df-rel 5319 |
This theorem is referenced by: recmulnq 10074 dmscut 32431 dib1dim 37186 |
Copyright terms: Public domain | W3C validator |