Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . 4
⊢
(*Q‘𝐴) ∈ V |
2 | 1 | a1i 11 |
. . 3
⊢ (𝐴 ∈ Q →
(*Q‘𝐴) ∈ V) |
3 | | eleq1 2826 |
. . 3
⊢
((*Q‘𝐴) = 𝐵 →
((*Q‘𝐴) ∈ V ↔ 𝐵 ∈ V)) |
4 | 2, 3 | syl5ibcom 244 |
. 2
⊢ (𝐴 ∈ Q →
((*Q‘𝐴) = 𝐵 → 𝐵 ∈ V)) |
5 | | id 22 |
. . . . . 6
⊢ ((𝐴
·Q 𝐵) = 1Q →
(𝐴
·Q 𝐵) =
1Q) |
6 | | 1nq 10615 |
. . . . . 6
⊢
1Q ∈ Q |
7 | 5, 6 | eqeltrdi 2847 |
. . . . 5
⊢ ((𝐴
·Q 𝐵) = 1Q →
(𝐴
·Q 𝐵) ∈ Q) |
8 | | mulnqf 10636 |
. . . . . . 7
⊢
·Q :(Q ×
Q)⟶Q |
9 | 8 | fdmi 6596 |
. . . . . 6
⊢ dom
·Q = (Q ×
Q) |
10 | | 0nnq 10611 |
. . . . . 6
⊢ ¬
∅ ∈ Q |
11 | 9, 10 | ndmovrcl 7436 |
. . . . 5
⊢ ((𝐴
·Q 𝐵) ∈ Q → (𝐴 ∈ Q ∧
𝐵 ∈
Q)) |
12 | 7, 11 | syl 17 |
. . . 4
⊢ ((𝐴
·Q 𝐵) = 1Q →
(𝐴 ∈ Q
∧ 𝐵 ∈
Q)) |
13 | | elex 3440 |
. . . 4
⊢ (𝐵 ∈ Q →
𝐵 ∈
V) |
14 | 12, 13 | simpl2im 503 |
. . 3
⊢ ((𝐴
·Q 𝐵) = 1Q → 𝐵 ∈ V) |
15 | 14 | a1i 11 |
. 2
⊢ (𝐴 ∈ Q →
((𝐴
·Q 𝐵) = 1Q → 𝐵 ∈ V)) |
16 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦)) |
17 | 16 | eqeq1d 2740 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q
↔ (𝐴
·Q 𝑦) =
1Q)) |
18 | | oveq2 7263 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵)) |
19 | 18 | eqeq1d 2740 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q
↔ (𝐴
·Q 𝐵) =
1Q)) |
20 | | nqerid 10620 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
([Q]‘𝑥)
= 𝑥) |
21 | | relxp 5598 |
. . . . . . . . . . . 12
⊢ Rel
(N × N) |
22 | | elpqn 10612 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ Q →
𝑥 ∈ (N
× N)) |
23 | | 1st2nd 7853 |
. . . . . . . . . . . 12
⊢ ((Rel
(N × N) ∧ 𝑥 ∈ (N ×
N)) → 𝑥
= 〈(1st ‘𝑥), (2nd ‘𝑥)〉) |
24 | 21, 22, 23 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Q →
𝑥 = 〈(1st
‘𝑥), (2nd
‘𝑥)〉) |
25 | 24 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
([Q]‘𝑥)
= ([Q]‘〈(1st ‘𝑥), (2nd ‘𝑥)〉)) |
26 | 20, 25 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
𝑥 =
([Q]‘〈(1st ‘𝑥), (2nd ‘𝑥)〉)) |
27 | 26 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
(𝑥
·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉)) =
(([Q]‘〈(1st ‘𝑥), (2nd ‘𝑥)〉) ·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉))) |
28 | | mulerpq 10644 |
. . . . . . . 8
⊢
(([Q]‘〈(1st ‘𝑥), (2nd ‘𝑥)〉)
·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉)) =
([Q]‘(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ·pQ
〈(2nd ‘𝑥), (1st ‘𝑥)〉)) |
29 | 27, 28 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
(𝑥
·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉)) =
([Q]‘(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ·pQ
〈(2nd ‘𝑥), (1st ‘𝑥)〉))) |
30 | | xp1st 7836 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (N ×
N) → (1st ‘𝑥) ∈ N) |
31 | 22, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
(1st ‘𝑥)
∈ N) |
32 | | xp2nd 7837 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (N ×
N) → (2nd ‘𝑥) ∈ N) |
33 | 22, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
(2nd ‘𝑥)
∈ N) |
34 | | mulpipq 10627 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N) ∧ ((2nd ‘𝑥) ∈ N ∧
(1st ‘𝑥)
∈ N)) → (〈(1st ‘𝑥), (2nd ‘𝑥)〉
·pQ 〈(2nd ‘𝑥), (1st ‘𝑥)〉) =
〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((2nd ‘𝑥)
·N (1st ‘𝑥))〉) |
35 | 31, 33, 33, 31, 34 | syl22anc 835 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ·pQ
〈(2nd ‘𝑥), (1st ‘𝑥)〉) = 〈((1st
‘𝑥)
·N (2nd ‘𝑥)), ((2nd ‘𝑥)
·N (1st ‘𝑥))〉) |
36 | | mulcompi 10583 |
. . . . . . . . . 10
⊢
((2nd ‘𝑥) ·N
(1st ‘𝑥))
= ((1st ‘𝑥) ·N
(2nd ‘𝑥)) |
37 | 36 | opeq2i 4805 |
. . . . . . . . 9
⊢
〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((2nd ‘𝑥)
·N (1st ‘𝑥))〉 = 〈((1st
‘𝑥)
·N (2nd ‘𝑥)), ((1st ‘𝑥)
·N (2nd ‘𝑥))〉 |
38 | 35, 37 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ·pQ
〈(2nd ‘𝑥), (1st ‘𝑥)〉) = 〈((1st
‘𝑥)
·N (2nd ‘𝑥)), ((1st ‘𝑥)
·N (2nd ‘𝑥))〉) |
39 | 38 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
([Q]‘(〈(1st ‘𝑥), (2nd ‘𝑥)〉 ·pQ
〈(2nd ‘𝑥), (1st ‘𝑥)〉)) =
([Q]‘〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉)) |
40 | | mulclpi 10580 |
. . . . . . . . . . 11
⊢
(((1st ‘𝑥) ∈ N ∧
(2nd ‘𝑥)
∈ N) → ((1st ‘𝑥) ·N
(2nd ‘𝑥))
∈ N) |
41 | 31, 33, 40 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
((1st ‘𝑥)
·N (2nd ‘𝑥)) ∈ N) |
42 | | 1nqenq 10649 |
. . . . . . . . . 10
⊢
(((1st ‘𝑥) ·N
(2nd ‘𝑥))
∈ N → 1Q
~Q 〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
1Q ~Q 〈((1st
‘𝑥)
·N (2nd ‘𝑥)), ((1st ‘𝑥)
·N (2nd ‘𝑥))〉) |
44 | | elpqn 10612 |
. . . . . . . . . . 11
⊢
(1Q ∈ Q →
1Q ∈ (N ×
N)) |
45 | 6, 44 | ax-mp 5 |
. . . . . . . . . 10
⊢
1Q ∈ (N ×
N) |
46 | 41, 41 | opelxpd 5618 |
. . . . . . . . . 10
⊢ (𝑥 ∈ Q →
〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉 ∈ (N ×
N)) |
47 | | nqereq 10622 |
. . . . . . . . . 10
⊢
((1Q ∈ (N ×
N) ∧ 〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉 ∈ (N ×
N)) → (1Q
~Q 〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉 ↔
([Q]‘1Q) =
([Q]‘〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉))) |
48 | 45, 46, 47 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑥 ∈ Q →
(1Q ~Q 〈((1st
‘𝑥)
·N (2nd ‘𝑥)), ((1st ‘𝑥)
·N (2nd ‘𝑥))〉 ↔
([Q]‘1Q) =
([Q]‘〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉))) |
49 | 43, 48 | mpbid 231 |
. . . . . . . 8
⊢ (𝑥 ∈ Q →
([Q]‘1Q) =
([Q]‘〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉)) |
50 | | nqerid 10620 |
. . . . . . . . 9
⊢
(1Q ∈ Q →
([Q]‘1Q) =
1Q) |
51 | 6, 50 | ax-mp 5 |
. . . . . . . 8
⊢
([Q]‘1Q) =
1Q |
52 | 49, 51 | eqtr3di 2794 |
. . . . . . 7
⊢ (𝑥 ∈ Q →
([Q]‘〈((1st ‘𝑥) ·N
(2nd ‘𝑥)),
((1st ‘𝑥)
·N (2nd ‘𝑥))〉) =
1Q) |
53 | 29, 39, 52 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝑥 ∈ Q →
(𝑥
·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉)) =
1Q) |
54 | | fvex 6769 |
. . . . . . 7
⊢
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉) ∈ V |
55 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 =
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉) → (𝑥 ·Q 𝑦) = (𝑥 ·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉))) |
56 | 55 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑦 =
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉) → ((𝑥 ·Q 𝑦) = 1Q
↔ (𝑥
·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉)) =
1Q)) |
57 | 54, 56 | spcev 3535 |
. . . . . 6
⊢ ((𝑥
·Q
([Q]‘〈(2nd ‘𝑥), (1st ‘𝑥)〉)) = 1Q
→ ∃𝑦(𝑥
·Q 𝑦) =
1Q) |
58 | 53, 57 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ Q →
∃𝑦(𝑥 ·Q 𝑦) =
1Q) |
59 | | mulcomnq 10640 |
. . . . . 6
⊢ (𝑟
·Q 𝑠) = (𝑠 ·Q 𝑟) |
60 | | mulassnq 10646 |
. . . . . 6
⊢ ((𝑟
·Q 𝑠) ·Q 𝑡) = (𝑟 ·Q (𝑠
·Q 𝑡)) |
61 | | mulidnq 10650 |
. . . . . 6
⊢ (𝑟 ∈ Q →
(𝑟
·Q 1Q) = 𝑟) |
62 | 6, 9, 10, 59, 60, 61 | caovmo 7487 |
. . . . 5
⊢
∃*𝑦(𝑥
·Q 𝑦) =
1Q |
63 | | df-eu 2569 |
. . . . 5
⊢
(∃!𝑦(𝑥
·Q 𝑦) = 1Q ↔
(∃𝑦(𝑥
·Q 𝑦) = 1Q ∧
∃*𝑦(𝑥
·Q 𝑦) =
1Q)) |
64 | 58, 62, 63 | sylanblrc 589 |
. . . 4
⊢ (𝑥 ∈ Q →
∃!𝑦(𝑥
·Q 𝑦) =
1Q) |
65 | | cnvimass 5978 |
. . . . . . . 8
⊢ (◡ ·Q “
{1Q}) ⊆ dom
·Q |
66 | | df-rq 10604 |
. . . . . . . 8
⊢
*Q = (◡
·Q “
{1Q}) |
67 | 9 | eqcomi 2747 |
. . . . . . . 8
⊢
(Q × Q) = dom
·Q |
68 | 65, 66, 67 | 3sstr4i 3960 |
. . . . . . 7
⊢
*Q ⊆ (Q ×
Q) |
69 | | relxp 5598 |
. . . . . . 7
⊢ Rel
(Q × Q) |
70 | | relss 5682 |
. . . . . . 7
⊢
(*Q ⊆ (Q ×
Q) → (Rel (Q × Q) →
Rel *Q)) |
71 | 68, 69, 70 | mp2 9 |
. . . . . 6
⊢ Rel
*Q |
72 | 66 | eleq2i 2830 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈
*Q ↔ 〈𝑥, 𝑦〉 ∈ (◡ ·Q “
{1Q})) |
73 | | ffn 6584 |
. . . . . . . . 9
⊢ (
·Q :(Q ×
Q)⟶Q →
·Q Fn (Q ×
Q)) |
74 | | fniniseg 6919 |
. . . . . . . . 9
⊢ (
·Q Fn (Q × Q)
→ (〈𝑥, 𝑦〉 ∈ (◡ ·Q “
{1Q}) ↔ (〈𝑥, 𝑦〉 ∈ (Q ×
Q) ∧ ( ·Q ‘〈𝑥, 𝑦〉) =
1Q))) |
75 | 8, 73, 74 | mp2b 10 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ (◡ ·Q “
{1Q}) ↔ (〈𝑥, 𝑦〉 ∈ (Q ×
Q) ∧ ( ·Q ‘〈𝑥, 𝑦〉) =
1Q)) |
76 | | ancom 460 |
. . . . . . . . 9
⊢
((〈𝑥, 𝑦〉 ∈ (Q
× Q) ∧ ( ·Q
‘〈𝑥, 𝑦〉) =
1Q) ↔ (( ·Q
‘〈𝑥, 𝑦〉) =
1Q ∧ 〈𝑥, 𝑦〉 ∈ (Q ×
Q))) |
77 | | ancom 460 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Q ∧
(𝑥
·Q 𝑦) = 1Q) ↔
((𝑥
·Q 𝑦) = 1Q ∧ 𝑥 ∈
Q)) |
78 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥
·Q 𝑦) = 1Q →
((𝑥
·Q 𝑦) ∈ Q ↔
1Q ∈ Q)) |
79 | 6, 78 | mpbiri 257 |
. . . . . . . . . . . . . 14
⊢ ((𝑥
·Q 𝑦) = 1Q → (𝑥
·Q 𝑦) ∈ Q) |
80 | 9, 10 | ndmovrcl 7436 |
. . . . . . . . . . . . . 14
⊢ ((𝑥
·Q 𝑦) ∈ Q → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥
·Q 𝑦) = 1Q → (𝑥 ∈ Q ∧
𝑦 ∈
Q)) |
82 | | opelxpi 5617 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ 〈𝑥, 𝑦〉 ∈ (Q
× Q)) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥
·Q 𝑦) = 1Q →
〈𝑥, 𝑦〉 ∈ (Q ×
Q)) |
84 | 81 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝑥
·Q 𝑦) = 1Q → 𝑥 ∈
Q) |
85 | 83, 84 | 2thd 264 |
. . . . . . . . . . 11
⊢ ((𝑥
·Q 𝑦) = 1Q →
(〈𝑥, 𝑦〉 ∈ (Q
× Q) ↔ 𝑥 ∈ Q)) |
86 | 85 | pm5.32i 574 |
. . . . . . . . . 10
⊢ (((𝑥
·Q 𝑦) = 1Q ∧
〈𝑥, 𝑦〉 ∈ (Q ×
Q)) ↔ ((𝑥 ·Q 𝑦) = 1Q
∧ 𝑥 ∈
Q)) |
87 | | df-ov 7258 |
. . . . . . . . . . . 12
⊢ (𝑥
·Q 𝑦) = ( ·Q
‘〈𝑥, 𝑦〉) |
88 | 87 | eqeq1i 2743 |
. . . . . . . . . . 11
⊢ ((𝑥
·Q 𝑦) = 1Q ↔ (
·Q ‘〈𝑥, 𝑦〉) =
1Q) |
89 | 88 | anbi1i 623 |
. . . . . . . . . 10
⊢ (((𝑥
·Q 𝑦) = 1Q ∧
〈𝑥, 𝑦〉 ∈ (Q ×
Q)) ↔ (( ·Q
‘〈𝑥, 𝑦〉) =
1Q ∧ 〈𝑥, 𝑦〉 ∈ (Q ×
Q))) |
90 | 77, 86, 89 | 3bitr2ri 299 |
. . . . . . . . 9
⊢ (((
·Q ‘〈𝑥, 𝑦〉) = 1Q ∧
〈𝑥, 𝑦〉 ∈ (Q ×
Q)) ↔ (𝑥
∈ Q ∧ (𝑥 ·Q 𝑦) =
1Q)) |
91 | 76, 90 | bitri 274 |
. . . . . . . 8
⊢
((〈𝑥, 𝑦〉 ∈ (Q
× Q) ∧ ( ·Q
‘〈𝑥, 𝑦〉) =
1Q) ↔ (𝑥 ∈ Q ∧ (𝑥
·Q 𝑦) =
1Q)) |
92 | 72, 75, 91 | 3bitri 296 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈
*Q ↔ (𝑥 ∈ Q ∧ (𝑥
·Q 𝑦) =
1Q)) |
93 | 92 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (〈𝑥, 𝑦〉 ∈
*Q ↔ (𝑥 ∈ Q ∧ (𝑥
·Q 𝑦) =
1Q))) |
94 | 71, 93 | opabbi2dv 5747 |
. . . . 5
⊢ (⊤
→ *Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑥
·Q 𝑦) =
1Q)}) |
95 | 94 | mptru 1546 |
. . . 4
⊢
*Q = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ Q ∧ (𝑥
·Q 𝑦) =
1Q)} |
96 | 17, 19, 64, 95 | fvopab3g 6852 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ V) →
((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) =
1Q)) |
97 | 96 | ex 412 |
. 2
⊢ (𝐴 ∈ Q →
(𝐵 ∈ V →
((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) =
1Q))) |
98 | 4, 15, 97 | pm5.21ndd 380 |
1
⊢ (𝐴 ∈ Q →
((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) =
1Q)) |