MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recmulnq Structured version   Visualization version   GIF version

Theorem recmulnq 10924
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
recmulnq (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6874 . . . 4 (*Q𝐴) ∈ V
21a1i 11 . . 3 (𝐴Q → (*Q𝐴) ∈ V)
3 eleq1 2817 . . 3 ((*Q𝐴) = 𝐵 → ((*Q𝐴) ∈ V ↔ 𝐵 ∈ V))
42, 3syl5ibcom 245 . 2 (𝐴Q → ((*Q𝐴) = 𝐵𝐵 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) = 1Q)
6 1nq 10888 . . . . . 6 1QQ
75, 6eqeltrdi 2837 . . . . 5 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) ∈ Q)
8 mulnqf 10909 . . . . . . 7 ·Q :(Q × Q)⟶Q
98fdmi 6702 . . . . . 6 dom ·Q = (Q × Q)
10 0nnq 10884 . . . . . 6 ¬ ∅ ∈ Q
119, 10ndmovrcl 7578 . . . . 5 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴Q𝐵Q))
127, 11syl 17 . . . 4 ((𝐴 ·Q 𝐵) = 1Q → (𝐴Q𝐵Q))
13 elex 3471 . . . 4 (𝐵Q𝐵 ∈ V)
1412, 13simpl2im 503 . . 3 ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V)
1514a1i 11 . 2 (𝐴Q → ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V))
16 oveq1 7397 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
1716eqeq1d 2732 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
18 oveq2 7398 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
1918eqeq1d 2732 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
20 nqerid 10893 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = 𝑥)
21 relxp 5659 . . . . . . . . . . . 12 Rel (N × N)
22 elpqn 10885 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
23 1st2nd 8021 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝑥 ∈ (N × N)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2421, 22, 23sylancr 587 . . . . . . . . . . 11 (𝑥Q𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524fveq2d 6865 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2620, 25eqtr3d 2767 . . . . . . . . 9 (𝑥Q𝑥 = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2726oveq1d 7405 . . . . . . . 8 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
28 mulerpq 10917 . . . . . . . 8 (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩))
2927, 28eqtrdi 2781 . . . . . . 7 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)))
30 xp1st 8003 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
3122, 30syl 17 . . . . . . . . . 10 (𝑥Q → (1st𝑥) ∈ N)
32 xp2nd 8004 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
3322, 32syl 17 . . . . . . . . . 10 (𝑥Q → (2nd𝑥) ∈ N)
34 mulpipq 10900 . . . . . . . . . 10 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((2nd𝑥) ∈ N ∧ (1st𝑥) ∈ N)) → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
3531, 33, 33, 31, 34syl22anc 838 . . . . . . . . 9 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
36 mulcompi 10856 . . . . . . . . . 10 ((2nd𝑥) ·N (1st𝑥)) = ((1st𝑥) ·N (2nd𝑥))
3736opeq2i 4844 . . . . . . . . 9 ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩ = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩
3835, 37eqtrdi 2781 . . . . . . . 8 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
3938fveq2d 6865 . . . . . . 7 (𝑥Q → ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
40 mulclpi 10853 . . . . . . . . . . 11 (((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
4131, 33, 40syl2anc 584 . . . . . . . . . 10 (𝑥Q → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
42 1nqenq 10922 . . . . . . . . . 10 (((1st𝑥) ·N (2nd𝑥)) ∈ N → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
4341, 42syl 17 . . . . . . . . 9 (𝑥Q → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
44 elpqn 10885 . . . . . . . . . . 11 (1QQ → 1Q ∈ (N × N))
456, 44ax-mp 5 . . . . . . . . . 10 1Q ∈ (N × N)
4641, 41opelxpd 5680 . . . . . . . . . 10 (𝑥Q → ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N))
47 nqereq 10895 . . . . . . . . . 10 ((1Q ∈ (N × N) ∧ ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N)) → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
4845, 46, 47sylancr 587 . . . . . . . . 9 (𝑥Q → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
4943, 48mpbid 232 . . . . . . . 8 (𝑥Q → ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
50 nqerid 10893 . . . . . . . . 9 (1QQ → ([Q]‘1Q) = 1Q)
516, 50ax-mp 5 . . . . . . . 8 ([Q]‘1Q) = 1Q
5249, 51eqtr3di 2780 . . . . . . 7 (𝑥Q → ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩) = 1Q)
5329, 39, 523eqtrd 2769 . . . . . 6 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q)
54 fvex 6874 . . . . . . 7 ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) ∈ V
55 oveq2 7398 . . . . . . . 8 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → (𝑥 ·Q 𝑦) = (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
5655eqeq1d 2732 . . . . . . 7 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q))
5754, 56spcev 3575 . . . . . 6 ((𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
5853, 57syl 17 . . . . 5 (𝑥Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
59 mulcomnq 10913 . . . . . 6 (𝑟 ·Q 𝑠) = (𝑠 ·Q 𝑟)
60 mulassnq 10919 . . . . . 6 ((𝑟 ·Q 𝑠) ·Q 𝑡) = (𝑟 ·Q (𝑠 ·Q 𝑡))
61 mulidnq 10923 . . . . . 6 (𝑟Q → (𝑟 ·Q 1Q) = 𝑟)
626, 9, 10, 59, 60, 61caovmo 7629 . . . . 5 ∃*𝑦(𝑥 ·Q 𝑦) = 1Q
63 df-eu 2563 . . . . 5 (∃!𝑦(𝑥 ·Q 𝑦) = 1Q ↔ (∃𝑦(𝑥 ·Q 𝑦) = 1Q ∧ ∃*𝑦(𝑥 ·Q 𝑦) = 1Q))
6458, 62, 63sylanblrc 590 . . . 4 (𝑥Q → ∃!𝑦(𝑥 ·Q 𝑦) = 1Q)
65 cnvimass 6056 . . . . . . . 8 ( ·Q “ {1Q}) ⊆ dom ·Q
66 df-rq 10877 . . . . . . . 8 *Q = ( ·Q “ {1Q})
679eqcomi 2739 . . . . . . . 8 (Q × Q) = dom ·Q
6865, 66, 673sstr4i 4001 . . . . . . 7 *Q ⊆ (Q × Q)
69 relxp 5659 . . . . . . 7 Rel (Q × Q)
70 relss 5747 . . . . . . 7 (*Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel *Q))
7168, 69, 70mp2 9 . . . . . 6 Rel *Q
7266eleq2i 2821 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ ⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}))
73 ffn 6691 . . . . . . . . 9 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
74 fniniseg 7035 . . . . . . . . 9 ( ·Q Fn (Q × Q) → (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)))
758, 73, 74mp2b 10 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q))
76 ancom 460 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
77 ancom 460 . . . . . . . . . 10 ((𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
78 eleq1 2817 . . . . . . . . . . . . . . 15 ((𝑥 ·Q 𝑦) = 1Q → ((𝑥 ·Q 𝑦) ∈ Q ↔ 1QQ))
796, 78mpbiri 258 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) = 1Q → (𝑥 ·Q 𝑦) ∈ Q)
809, 10ndmovrcl 7578 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
8179, 80syl 17 . . . . . . . . . . . . 13 ((𝑥 ·Q 𝑦) = 1Q → (𝑥Q𝑦Q))
82 opelxpi 5678 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8481simpld 494 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q𝑥Q)
8583, 842thd 265 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q → (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ↔ 𝑥Q))
8685pm5.32i 574 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
87 df-ov 7393 . . . . . . . . . . . 12 (𝑥 ·Q 𝑦) = ( ·Q ‘⟨𝑥, 𝑦⟩)
8887eqeq1i 2735 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q ↔ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)
8988anbi1i 624 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
9077, 86, 893bitr2ri 300 . . . . . . . . 9 ((( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9176, 90bitri 275 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9272, 75, 913bitri 297 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9392a1i 11 . . . . . 6 (⊤ → (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
9471, 93opabbi2dv 5816 . . . . 5 (⊤ → *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)})
9594mptru 1547 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
9617, 19, 64, 95fvopab3g 6966 . . 3 ((𝐴Q𝐵 ∈ V) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
9796ex 412 . 2 (𝐴Q → (𝐵 ∈ V → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)))
984, 15, 97pm5.21ndd 379 1 (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wex 1779  wcel 2109  ∃*wmo 2532  ∃!weu 2562  Vcvv 3450  wss 3917  {csn 4592  cop 4598   class class class wbr 5110  {copab 5172   × cxp 5639  ccnv 5640  dom cdm 5641  cima 5644  Rel wrel 5646   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Ncnpi 10804   ·N cmi 10806   ·pQ cmpq 10809   ~Q ceq 10811  Qcnq 10812  1Qc1q 10813  [Q]cerq 10814   ·Q cmq 10816  *Qcrq 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ni 10832  df-mi 10834  df-lti 10835  df-mpq 10869  df-enq 10871  df-nq 10872  df-erq 10873  df-mq 10875  df-1nq 10876  df-rq 10877
This theorem is referenced by:  recidnq  10925  recrecnq  10927  reclem3pr  11009
  Copyright terms: Public domain W3C validator