MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recmulnq Structured version   Visualization version   GIF version

Theorem recmulnq 10388
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
recmulnq (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6685 . . . 4 (*Q𝐴) ∈ V
21a1i 11 . . 3 (𝐴Q → (*Q𝐴) ∈ V)
3 eleq1 2902 . . 3 ((*Q𝐴) = 𝐵 → ((*Q𝐴) ∈ V ↔ 𝐵 ∈ V))
42, 3syl5ibcom 247 . 2 (𝐴Q → ((*Q𝐴) = 𝐵𝐵 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) = 1Q)
6 1nq 10352 . . . . . 6 1QQ
75, 6eqeltrdi 2923 . . . . 5 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) ∈ Q)
8 mulnqf 10373 . . . . . . 7 ·Q :(Q × Q)⟶Q
98fdmi 6526 . . . . . 6 dom ·Q = (Q × Q)
10 0nnq 10348 . . . . . 6 ¬ ∅ ∈ Q
119, 10ndmovrcl 7336 . . . . 5 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴Q𝐵Q))
127, 11syl 17 . . . 4 ((𝐴 ·Q 𝐵) = 1Q → (𝐴Q𝐵Q))
13 elex 3514 . . . 4 (𝐵Q𝐵 ∈ V)
1412, 13simpl2im 506 . . 3 ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V)
1514a1i 11 . 2 (𝐴Q → ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V))
16 oveq1 7165 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
1716eqeq1d 2825 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
18 oveq2 7166 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
1918eqeq1d 2825 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
20 nqerid 10357 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = 𝑥)
21 relxp 5575 . . . . . . . . . . . 12 Rel (N × N)
22 elpqn 10349 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
23 1st2nd 7740 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝑥 ∈ (N × N)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2421, 22, 23sylancr 589 . . . . . . . . . . 11 (𝑥Q𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524fveq2d 6676 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2620, 25eqtr3d 2860 . . . . . . . . 9 (𝑥Q𝑥 = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2726oveq1d 7173 . . . . . . . 8 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
28 mulerpq 10381 . . . . . . . 8 (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩))
2927, 28syl6eq 2874 . . . . . . 7 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)))
30 xp1st 7723 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
3122, 30syl 17 . . . . . . . . . 10 (𝑥Q → (1st𝑥) ∈ N)
32 xp2nd 7724 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
3322, 32syl 17 . . . . . . . . . 10 (𝑥Q → (2nd𝑥) ∈ N)
34 mulpipq 10364 . . . . . . . . . 10 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((2nd𝑥) ∈ N ∧ (1st𝑥) ∈ N)) → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
3531, 33, 33, 31, 34syl22anc 836 . . . . . . . . 9 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
36 mulcompi 10320 . . . . . . . . . 10 ((2nd𝑥) ·N (1st𝑥)) = ((1st𝑥) ·N (2nd𝑥))
3736opeq2i 4809 . . . . . . . . 9 ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩ = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩
3835, 37syl6eq 2874 . . . . . . . 8 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
3938fveq2d 6676 . . . . . . 7 (𝑥Q → ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
40 nqerid 10357 . . . . . . . . 9 (1QQ → ([Q]‘1Q) = 1Q)
416, 40ax-mp 5 . . . . . . . 8 ([Q]‘1Q) = 1Q
42 mulclpi 10317 . . . . . . . . . . 11 (((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
4331, 33, 42syl2anc 586 . . . . . . . . . 10 (𝑥Q → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
44 1nqenq 10386 . . . . . . . . . 10 (((1st𝑥) ·N (2nd𝑥)) ∈ N → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
4543, 44syl 17 . . . . . . . . 9 (𝑥Q → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
46 elpqn 10349 . . . . . . . . . . 11 (1QQ → 1Q ∈ (N × N))
476, 46ax-mp 5 . . . . . . . . . 10 1Q ∈ (N × N)
4843, 43opelxpd 5595 . . . . . . . . . 10 (𝑥Q → ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N))
49 nqereq 10359 . . . . . . . . . 10 ((1Q ∈ (N × N) ∧ ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N)) → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
5047, 48, 49sylancr 589 . . . . . . . . 9 (𝑥Q → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
5145, 50mpbid 234 . . . . . . . 8 (𝑥Q → ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
5241, 51syl5reqr 2873 . . . . . . 7 (𝑥Q → ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩) = 1Q)
5329, 39, 523eqtrd 2862 . . . . . 6 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q)
54 fvex 6685 . . . . . . 7 ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) ∈ V
55 oveq2 7166 . . . . . . . 8 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → (𝑥 ·Q 𝑦) = (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
5655eqeq1d 2825 . . . . . . 7 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q))
5754, 56spcev 3609 . . . . . 6 ((𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
5853, 57syl 17 . . . . 5 (𝑥Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
59 mulcomnq 10377 . . . . . 6 (𝑟 ·Q 𝑠) = (𝑠 ·Q 𝑟)
60 mulassnq 10383 . . . . . 6 ((𝑟 ·Q 𝑠) ·Q 𝑡) = (𝑟 ·Q (𝑠 ·Q 𝑡))
61 mulidnq 10387 . . . . . 6 (𝑟Q → (𝑟 ·Q 1Q) = 𝑟)
626, 9, 10, 59, 60, 61caovmo 7387 . . . . 5 ∃*𝑦(𝑥 ·Q 𝑦) = 1Q
63 df-eu 2654 . . . . 5 (∃!𝑦(𝑥 ·Q 𝑦) = 1Q ↔ (∃𝑦(𝑥 ·Q 𝑦) = 1Q ∧ ∃*𝑦(𝑥 ·Q 𝑦) = 1Q))
6458, 62, 63sylanblrc 592 . . . 4 (𝑥Q → ∃!𝑦(𝑥 ·Q 𝑦) = 1Q)
65 cnvimass 5951 . . . . . . . 8 ( ·Q “ {1Q}) ⊆ dom ·Q
66 df-rq 10341 . . . . . . . 8 *Q = ( ·Q “ {1Q})
679eqcomi 2832 . . . . . . . 8 (Q × Q) = dom ·Q
6865, 66, 673sstr4i 4012 . . . . . . 7 *Q ⊆ (Q × Q)
69 relxp 5575 . . . . . . 7 Rel (Q × Q)
70 relss 5658 . . . . . . 7 (*Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel *Q))
7168, 69, 70mp2 9 . . . . . 6 Rel *Q
7266eleq2i 2906 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ ⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}))
73 ffn 6516 . . . . . . . . 9 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
74 fniniseg 6832 . . . . . . . . 9 ( ·Q Fn (Q × Q) → (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)))
758, 73, 74mp2b 10 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q))
76 ancom 463 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
77 ancom 463 . . . . . . . . . 10 ((𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
78 eleq1 2902 . . . . . . . . . . . . . . 15 ((𝑥 ·Q 𝑦) = 1Q → ((𝑥 ·Q 𝑦) ∈ Q ↔ 1QQ))
796, 78mpbiri 260 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) = 1Q → (𝑥 ·Q 𝑦) ∈ Q)
809, 10ndmovrcl 7336 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
8179, 80syl 17 . . . . . . . . . . . . 13 ((𝑥 ·Q 𝑦) = 1Q → (𝑥Q𝑦Q))
82 opelxpi 5594 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8481simpld 497 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q𝑥Q)
8583, 842thd 267 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q → (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ↔ 𝑥Q))
8685pm5.32i 577 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
87 df-ov 7161 . . . . . . . . . . . 12 (𝑥 ·Q 𝑦) = ( ·Q ‘⟨𝑥, 𝑦⟩)
8887eqeq1i 2828 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q ↔ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)
8988anbi1i 625 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
9077, 86, 893bitr2ri 302 . . . . . . . . 9 ((( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9176, 90bitri 277 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9272, 75, 913bitri 299 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9392a1i 11 . . . . . 6 (⊤ → (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
9471, 93opabbi2dv 5722 . . . . 5 (⊤ → *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)})
9594mptru 1544 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
9617, 19, 64, 95fvopab3g 6765 . . 3 ((𝐴Q𝐵 ∈ V) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
9796ex 415 . 2 (𝐴Q → (𝐵 ∈ V → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)))
984, 15, 97pm5.21ndd 383 1 (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wtru 1538  wex 1780  wcel 2114  ∃*wmo 2620  ∃!weu 2653  Vcvv 3496  wss 3938  {csn 4569  cop 4575   class class class wbr 5068  {copab 5130   × cxp 5555  ccnv 5556  dom cdm 5557  cima 5560  Rel wrel 5562   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Ncnpi 10268   ·N cmi 10270   ·pQ cmpq 10273   ~Q ceq 10275  Qcnq 10276  1Qc1q 10277  [Q]cerq 10278   ·Q cmq 10280  *Qcrq 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ni 10296  df-mi 10298  df-lti 10299  df-mpq 10333  df-enq 10335  df-nq 10336  df-erq 10337  df-mq 10339  df-1nq 10340  df-rq 10341
This theorem is referenced by:  recidnq  10389  recrecnq  10391  reclem3pr  10473
  Copyright terms: Public domain W3C validator