MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recmulnq Structured version   Visualization version   GIF version

Theorem recmulnq 10543
Description: Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
recmulnq (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))

Proof of Theorem recmulnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6708 . . . 4 (*Q𝐴) ∈ V
21a1i 11 . . 3 (𝐴Q → (*Q𝐴) ∈ V)
3 eleq1 2818 . . 3 ((*Q𝐴) = 𝐵 → ((*Q𝐴) ∈ V ↔ 𝐵 ∈ V))
42, 3syl5ibcom 248 . 2 (𝐴Q → ((*Q𝐴) = 𝐵𝐵 ∈ V))
5 id 22 . . . . . 6 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) = 1Q)
6 1nq 10507 . . . . . 6 1QQ
75, 6eqeltrdi 2839 . . . . 5 ((𝐴 ·Q 𝐵) = 1Q → (𝐴 ·Q 𝐵) ∈ Q)
8 mulnqf 10528 . . . . . . 7 ·Q :(Q × Q)⟶Q
98fdmi 6535 . . . . . 6 dom ·Q = (Q × Q)
10 0nnq 10503 . . . . . 6 ¬ ∅ ∈ Q
119, 10ndmovrcl 7372 . . . . 5 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴Q𝐵Q))
127, 11syl 17 . . . 4 ((𝐴 ·Q 𝐵) = 1Q → (𝐴Q𝐵Q))
13 elex 3416 . . . 4 (𝐵Q𝐵 ∈ V)
1412, 13simpl2im 507 . . 3 ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V)
1514a1i 11 . 2 (𝐴Q → ((𝐴 ·Q 𝐵) = 1Q𝐵 ∈ V))
16 oveq1 7198 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·Q 𝑦) = (𝐴 ·Q 𝑦))
1716eqeq1d 2738 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
18 oveq2 7199 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·Q 𝑦) = (𝐴 ·Q 𝐵))
1918eqeq1d 2738 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝐵) = 1Q))
20 nqerid 10512 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = 𝑥)
21 relxp 5554 . . . . . . . . . . . 12 Rel (N × N)
22 elpqn 10504 . . . . . . . . . . . 12 (𝑥Q𝑥 ∈ (N × N))
23 1st2nd 7788 . . . . . . . . . . . 12 ((Rel (N × N) ∧ 𝑥 ∈ (N × N)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2421, 22, 23sylancr 590 . . . . . . . . . . 11 (𝑥Q𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
2524fveq2d 6699 . . . . . . . . . 10 (𝑥Q → ([Q]‘𝑥) = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2620, 25eqtr3d 2773 . . . . . . . . 9 (𝑥Q𝑥 = ([Q]‘⟨(1st𝑥), (2nd𝑥)⟩))
2726oveq1d 7206 . . . . . . . 8 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
28 mulerpq 10536 . . . . . . . 8 (([Q]‘⟨(1st𝑥), (2nd𝑥)⟩) ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩))
2927, 28eqtrdi 2787 . . . . . . 7 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)))
30 xp1st 7771 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
3122, 30syl 17 . . . . . . . . . 10 (𝑥Q → (1st𝑥) ∈ N)
32 xp2nd 7772 . . . . . . . . . . 11 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
3322, 32syl 17 . . . . . . . . . 10 (𝑥Q → (2nd𝑥) ∈ N)
34 mulpipq 10519 . . . . . . . . . 10 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((2nd𝑥) ∈ N ∧ (1st𝑥) ∈ N)) → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
3531, 33, 33, 31, 34syl22anc 839 . . . . . . . . 9 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩)
36 mulcompi 10475 . . . . . . . . . 10 ((2nd𝑥) ·N (1st𝑥)) = ((1st𝑥) ·N (2nd𝑥))
3736opeq2i 4774 . . . . . . . . 9 ⟨((1st𝑥) ·N (2nd𝑥)), ((2nd𝑥) ·N (1st𝑥))⟩ = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩
3835, 37eqtrdi 2787 . . . . . . . 8 (𝑥Q → (⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩) = ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
3938fveq2d 6699 . . . . . . 7 (𝑥Q → ([Q]‘(⟨(1st𝑥), (2nd𝑥)⟩ ·pQ ⟨(2nd𝑥), (1st𝑥)⟩)) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
40 mulclpi 10472 . . . . . . . . . . 11 (((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
4131, 33, 40syl2anc 587 . . . . . . . . . 10 (𝑥Q → ((1st𝑥) ·N (2nd𝑥)) ∈ N)
42 1nqenq 10541 . . . . . . . . . 10 (((1st𝑥) ·N (2nd𝑥)) ∈ N → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
4341, 42syl 17 . . . . . . . . 9 (𝑥Q → 1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)
44 elpqn 10504 . . . . . . . . . . 11 (1QQ → 1Q ∈ (N × N))
456, 44ax-mp 5 . . . . . . . . . 10 1Q ∈ (N × N)
4641, 41opelxpd 5574 . . . . . . . . . 10 (𝑥Q → ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N))
47 nqereq 10514 . . . . . . . . . 10 ((1Q ∈ (N × N) ∧ ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ∈ (N × N)) → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
4845, 46, 47sylancr 590 . . . . . . . . 9 (𝑥Q → (1Q ~Q ⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩ ↔ ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩)))
4943, 48mpbid 235 . . . . . . . 8 (𝑥Q → ([Q]‘1Q) = ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩))
50 nqerid 10512 . . . . . . . . 9 (1QQ → ([Q]‘1Q) = 1Q)
516, 50ax-mp 5 . . . . . . . 8 ([Q]‘1Q) = 1Q
5249, 51eqtr3di 2786 . . . . . . 7 (𝑥Q → ([Q]‘⟨((1st𝑥) ·N (2nd𝑥)), ((1st𝑥) ·N (2nd𝑥))⟩) = 1Q)
5329, 39, 523eqtrd 2775 . . . . . 6 (𝑥Q → (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q)
54 fvex 6708 . . . . . . 7 ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) ∈ V
55 oveq2 7199 . . . . . . . 8 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → (𝑥 ·Q 𝑦) = (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)))
5655eqeq1d 2738 . . . . . . 7 (𝑦 = ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩) → ((𝑥 ·Q 𝑦) = 1Q ↔ (𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q))
5754, 56spcev 3511 . . . . . 6 ((𝑥 ·Q ([Q]‘⟨(2nd𝑥), (1st𝑥)⟩)) = 1Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
5853, 57syl 17 . . . . 5 (𝑥Q → ∃𝑦(𝑥 ·Q 𝑦) = 1Q)
59 mulcomnq 10532 . . . . . 6 (𝑟 ·Q 𝑠) = (𝑠 ·Q 𝑟)
60 mulassnq 10538 . . . . . 6 ((𝑟 ·Q 𝑠) ·Q 𝑡) = (𝑟 ·Q (𝑠 ·Q 𝑡))
61 mulidnq 10542 . . . . . 6 (𝑟Q → (𝑟 ·Q 1Q) = 𝑟)
626, 9, 10, 59, 60, 61caovmo 7423 . . . . 5 ∃*𝑦(𝑥 ·Q 𝑦) = 1Q
63 df-eu 2568 . . . . 5 (∃!𝑦(𝑥 ·Q 𝑦) = 1Q ↔ (∃𝑦(𝑥 ·Q 𝑦) = 1Q ∧ ∃*𝑦(𝑥 ·Q 𝑦) = 1Q))
6458, 62, 63sylanblrc 593 . . . 4 (𝑥Q → ∃!𝑦(𝑥 ·Q 𝑦) = 1Q)
65 cnvimass 5934 . . . . . . . 8 ( ·Q “ {1Q}) ⊆ dom ·Q
66 df-rq 10496 . . . . . . . 8 *Q = ( ·Q “ {1Q})
679eqcomi 2745 . . . . . . . 8 (Q × Q) = dom ·Q
6865, 66, 673sstr4i 3930 . . . . . . 7 *Q ⊆ (Q × Q)
69 relxp 5554 . . . . . . 7 Rel (Q × Q)
70 relss 5638 . . . . . . 7 (*Q ⊆ (Q × Q) → (Rel (Q × Q) → Rel *Q))
7168, 69, 70mp2 9 . . . . . 6 Rel *Q
7266eleq2i 2822 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ ⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}))
73 ffn 6523 . . . . . . . . 9 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
74 fniniseg 6858 . . . . . . . . 9 ( ·Q Fn (Q × Q) → (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)))
758, 73, 74mp2b 10 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q))
76 ancom 464 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
77 ancom 464 . . . . . . . . . 10 ((𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
78 eleq1 2818 . . . . . . . . . . . . . . 15 ((𝑥 ·Q 𝑦) = 1Q → ((𝑥 ·Q 𝑦) ∈ Q ↔ 1QQ))
796, 78mpbiri 261 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) = 1Q → (𝑥 ·Q 𝑦) ∈ Q)
809, 10ndmovrcl 7372 . . . . . . . . . . . . . 14 ((𝑥 ·Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
8179, 80syl 17 . . . . . . . . . . . . 13 ((𝑥 ·Q 𝑦) = 1Q → (𝑥Q𝑦Q))
82 opelxpi 5573 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q → ⟨𝑥, 𝑦⟩ ∈ (Q × Q))
8481simpld 498 . . . . . . . . . . . 12 ((𝑥 ·Q 𝑦) = 1Q𝑥Q)
8583, 842thd 268 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q → (⟨𝑥, 𝑦⟩ ∈ (Q × Q) ↔ 𝑥Q))
8685pm5.32i 578 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ ((𝑥 ·Q 𝑦) = 1Q𝑥Q))
87 df-ov 7194 . . . . . . . . . . . 12 (𝑥 ·Q 𝑦) = ( ·Q ‘⟨𝑥, 𝑦⟩)
8887eqeq1i 2741 . . . . . . . . . . 11 ((𝑥 ·Q 𝑦) = 1Q ↔ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q)
8988anbi1i 627 . . . . . . . . . 10 (((𝑥 ·Q 𝑦) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)))
9077, 86, 893bitr2ri 303 . . . . . . . . 9 ((( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q ∧ ⟨𝑥, 𝑦⟩ ∈ (Q × Q)) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9176, 90bitri 278 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, 𝑦⟩) = 1Q) ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9272, 75, 913bitri 300 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q))
9392a1i 11 . . . . . 6 (⊤ → (⟨𝑥, 𝑦⟩ ∈ *Q ↔ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)))
9471, 93opabbi2dv 5703 . . . . 5 (⊤ → *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)})
9594mptru 1550 . . . 4 *Q = {⟨𝑥, 𝑦⟩ ∣ (𝑥Q ∧ (𝑥 ·Q 𝑦) = 1Q)}
9617, 19, 64, 95fvopab3g 6791 . . 3 ((𝐴Q𝐵 ∈ V) → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
9796ex 416 . 2 (𝐴Q → (𝐵 ∈ V → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)))
984, 15, 97pm5.21ndd 384 1 (𝐴Q → ((*Q𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wtru 1544  wex 1787  wcel 2112  ∃*wmo 2537  ∃!weu 2567  Vcvv 3398  wss 3853  {csn 4527  cop 4533   class class class wbr 5039  {copab 5101   × cxp 5534  ccnv 5535  dom cdm 5536  cima 5539  Rel wrel 5541   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  Ncnpi 10423   ·N cmi 10425   ·pQ cmpq 10428   ~Q ceq 10430  Qcnq 10431  1Qc1q 10432  [Q]cerq 10433   ·Q cmq 10435  *Qcrq 10436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-omul 8185  df-er 8369  df-ni 10451  df-mi 10453  df-lti 10454  df-mpq 10488  df-enq 10490  df-nq 10491  df-erq 10492  df-mq 10494  df-1nq 10495  df-rq 10496
This theorem is referenced by:  recidnq  10544  recrecnq  10546  reclem3pr  10628
  Copyright terms: Public domain W3C validator