![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxpf | Structured version Visualization version GIF version |
Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunxpf.1 | ⊢ Ⅎ𝑦𝐶 |
iunxpf.2 | ⊢ Ⅎ𝑧𝐶 |
iunxpf.3 | ⊢ Ⅎ𝑥𝐷 |
iunxpf.4 | ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxpf | ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐶 |
3 | iunxpf.2 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
4 | 3 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑧 𝑤 ∈ 𝐶 |
5 | iunxpf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
6 | 5 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐷 |
7 | iunxpf.4 | . . . . 5 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷) | |
8 | 7 | eleq2d 2820 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷)) |
9 | 2, 4, 6, 8 | rexxpf 5804 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
10 | eliun 4959 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶) | |
11 | eliun 4959 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷) | |
12 | eliun 4959 | . . . . 5 ⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) | |
13 | 12 | rexbii 3094 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
14 | 11, 13 | bitri 275 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
15 | 9, 10, 14 | 3bitr4i 303 | . 2 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷) |
16 | 15 | eqriv 2730 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 ∃wrex 3070 ⟨cop 4593 ∪ ciun 4955 × cxp 5632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-iun 4957 df-opab 5169 df-xp 5640 df-rel 5641 |
This theorem is referenced by: dfmpo 8035 |
Copyright terms: Public domain | W3C validator |