Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxpf | Structured version Visualization version GIF version |
Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunxpf.1 | ⊢ Ⅎ𝑦𝐶 |
iunxpf.2 | ⊢ Ⅎ𝑧𝐶 |
iunxpf.3 | ⊢ Ⅎ𝑥𝐷 |
iunxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxpf | ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
2 | 1 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐶 |
3 | iunxpf.2 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
4 | 3 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑧 𝑤 ∈ 𝐶 |
5 | iunxpf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
6 | 5 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐷 |
7 | iunxpf.4 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) | |
8 | 7 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑤 ∈ 𝐶 ↔ 𝑤 ∈ 𝐷)) |
9 | 2, 4, 6, 8 | rexxpf 5756 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
10 | eliun 4928 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤 ∈ 𝐶) | |
11 | eliun 4928 | . . . 4 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷) | |
12 | eliun 4928 | . . . . 5 ⊢ (𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) | |
13 | 12 | rexbii 3181 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝑤 ∈ ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
14 | 11, 13 | bitri 274 | . . 3 ⊢ (𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑤 ∈ 𝐷) |
15 | 9, 10, 14 | 3bitr4i 303 | . 2 ⊢ (𝑤 ∈ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ 𝑤 ∈ ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷) |
16 | 15 | eqriv 2735 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 × 𝐵)𝐶 = ∪ 𝑦 ∈ 𝐴 ∪ 𝑧 ∈ 𝐵 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∃wrex 3065 〈cop 4567 ∪ ciun 4924 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-iun 4926 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: dfmpo 7942 |
Copyright terms: Public domain | W3C validator |