MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxpf Structured version   Visualization version   GIF version

Theorem iunxpf 5757
Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
iunxpf.1 𝑦𝐶
iunxpf.2 𝑧𝐶
iunxpf.3 𝑥𝐷
iunxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
iunxpf 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem iunxpf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunxpf.1 . . . . 5 𝑦𝐶
21nfcri 2894 . . . 4 𝑦 𝑤𝐶
3 iunxpf.2 . . . . 5 𝑧𝐶
43nfcri 2894 . . . 4 𝑧 𝑤𝐶
5 iunxpf.3 . . . . 5 𝑥𝐷
65nfcri 2894 . . . 4 𝑥 𝑤𝐷
7 iunxpf.4 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
87eleq2d 2824 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑤𝐶𝑤𝐷))
92, 4, 6, 8rexxpf 5756 . . 3 (∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
10 eliun 4928 . . 3 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶)
11 eliun 4928 . . . 4 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴 𝑤 𝑧𝐵 𝐷)
12 eliun 4928 . . . . 5 (𝑤 𝑧𝐵 𝐷 ↔ ∃𝑧𝐵 𝑤𝐷)
1312rexbii 3181 . . . 4 (∃𝑦𝐴 𝑤 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
1411, 13bitri 274 . . 3 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
159, 10, 143bitr4i 303 . 2 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶𝑤 𝑦𝐴 𝑧𝐵 𝐷)
1615eqriv 2735 1 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wnfc 2887  wrex 3065  cop 4567   ciun 4924   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  dfmpo  7942
  Copyright terms: Public domain W3C validator