Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc0 Structured version   Visualization version   GIF version

Theorem opoc0 38376
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc0 (𝐾 ∈ OP → ( 0 ) = 1 )

Proof of Theorem opoc0
StepHypRef Expression
1 opoc1.z . . 3 0 = (0.‘𝐾)
2 opoc1.u . . 3 1 = (1.‘𝐾)
3 opoc1.o . . 3 = (oc‘𝐾)
41, 2, 3opoc1 38375 . 2 (𝐾 ∈ OP → ( 1 ) = 0 )
5 eqid 2732 . . . 4 (Base‘𝐾) = (Base‘𝐾)
65, 2op1cl 38358 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
75, 1op0cl 38357 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
85, 3opcon1b 38371 . . 3 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
96, 7, 8mpd3an23 1463 . 2 (𝐾 ∈ OP → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
104, 9mpbid 231 1 (𝐾 ∈ OP → ( 0 ) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  cfv 6543  Basecbs 17148  occoc 17209  0.cp0 18380  1.cp1 18381  OPcops 38345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-proset 18252  df-poset 18270  df-lub 18303  df-glb 18304  df-p0 18382  df-p1 18383  df-oposet 38349
This theorem is referenced by:  1cvrjat  38649  doch0  40532
  Copyright terms: Public domain W3C validator