Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc0 Structured version   Visualization version   GIF version

Theorem opoc0 37478
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc0 (𝐾 ∈ OP → ( 0 ) = 1 )

Proof of Theorem opoc0
StepHypRef Expression
1 opoc1.z . . 3 0 = (0.‘𝐾)
2 opoc1.u . . 3 1 = (1.‘𝐾)
3 opoc1.o . . 3 = (oc‘𝐾)
41, 2, 3opoc1 37477 . 2 (𝐾 ∈ OP → ( 1 ) = 0 )
5 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
65, 2op1cl 37460 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
75, 1op0cl 37459 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
85, 3opcon1b 37473 . . 3 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
96, 7, 8mpd3an23 1462 . 2 (𝐾 ∈ OP → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
104, 9mpbid 231 1 (𝐾 ∈ OP → ( 0 ) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  cfv 6479  Basecbs 17009  occoc 17067  0.cp0 18238  1.cp1 18239  OPcops 37447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-proset 18110  df-poset 18128  df-lub 18161  df-glb 18162  df-p0 18240  df-p1 18241  df-oposet 37451
This theorem is referenced by:  1cvrjat  37751  doch0  39634
  Copyright terms: Public domain W3C validator