Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc0 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | ⊢ 0 = (0.‘𝐾) |
opoc1.u | ⊢ 1 = (1.‘𝐾) |
opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoc0 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoc1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
2 | opoc1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | opoc1.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | opoc1 37195 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
5 | eqid 2739 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 5, 2 | op1cl 37178 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
7 | 5, 1 | op0cl 37177 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
8 | 5, 3 | opcon1b 37191 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
9 | 6, 7, 8 | mpd3an23 1461 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
10 | 4, 9 | mpbid 231 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 Basecbs 16893 occoc 16951 0.cp0 18122 1.cp1 18123 OPcops 37165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-proset 17994 df-poset 18012 df-lub 18045 df-glb 18046 df-p0 18124 df-p1 18125 df-oposet 37169 |
This theorem is referenced by: 1cvrjat 37468 doch0 39351 |
Copyright terms: Public domain | W3C validator |