Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc0 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | ⊢ 0 = (0.‘𝐾) |
opoc1.u | ⊢ 1 = (1.‘𝐾) |
opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoc0 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoc1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
2 | opoc1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | opoc1.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | opoc1 36778 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
5 | eqid 2758 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 5, 2 | op1cl 36761 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
7 | 5, 1 | op0cl 36760 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
8 | 5, 3 | opcon1b 36774 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
9 | 6, 7, 8 | mpd3an23 1460 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
10 | 4, 9 | mpbid 235 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 Basecbs 16541 occoc 16631 0.cp0 17713 1.cp1 17714 OPcops 36748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-proset 17604 df-poset 17622 df-lub 17650 df-glb 17651 df-p0 17715 df-p1 17716 df-oposet 36752 |
This theorem is referenced by: 1cvrjat 37051 doch0 38934 |
Copyright terms: Public domain | W3C validator |