| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc0 | Structured version Visualization version GIF version | ||
| Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.) |
| Ref | Expression |
|---|---|
| opoc1.z | ⊢ 0 = (0.‘𝐾) |
| opoc1.u | ⊢ 1 = (1.‘𝐾) |
| opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoc0 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoc1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 2 | opoc1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | opoc1.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 1, 2, 3 | opoc1 39311 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 5, 2 | op1cl 39294 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 7 | 5, 1 | op0cl 39293 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 8 | 5, 3 | opcon1b 39307 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
| 9 | 6, 7, 8 | mpd3an23 1465 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
| 10 | 4, 9 | mpbid 232 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 occoc 17169 0.cp0 18327 1.cp1 18328 OPcops 39281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-p0 18329 df-p1 18330 df-oposet 39285 |
| This theorem is referenced by: 1cvrjat 39584 doch0 41467 |
| Copyright terms: Public domain | W3C validator |