![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc0 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | ⊢ 0 = (0.‘𝐾) |
opoc1.u | ⊢ 1 = (1.‘𝐾) |
opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoc0 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoc1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
2 | opoc1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | opoc1.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
4 | 1, 2, 3 | opoc1 38375 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
5 | eqid 2732 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 5, 2 | op1cl 38358 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
7 | 5, 1 | op0cl 38357 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
8 | 5, 3 | opcon1b 38371 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
9 | 6, 7, 8 | mpd3an23 1463 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
10 | 4, 9 | mpbid 231 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 Basecbs 17148 occoc 17209 0.cp0 18380 1.cp1 18381 OPcops 38345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-proset 18252 df-poset 18270 df-lub 18303 df-glb 18304 df-p0 18382 df-p1 18383 df-oposet 38349 |
This theorem is referenced by: 1cvrjat 38649 doch0 40532 |
Copyright terms: Public domain | W3C validator |