| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc0 | Structured version Visualization version GIF version | ||
| Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.) |
| Ref | Expression |
|---|---|
| opoc1.z | ⊢ 0 = (0.‘𝐾) |
| opoc1.u | ⊢ 1 = (1.‘𝐾) |
| opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoc0 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoc1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 2 | opoc1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | opoc1.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | 1, 2, 3 | opoc1 39202 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | 5, 2 | op1cl 39185 | . . 3 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 7 | 5, 1 | op0cl 39184 | . . 3 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 8 | 5, 3 | opcon1b 39198 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
| 9 | 6, 7, 8 | mpd3an23 1465 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 ) = 0 ↔ ( ⊥ ‘ 0 ) = 1 )) |
| 10 | 4, 9 | mpbid 232 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Basecbs 17186 occoc 17235 0.cp0 18389 1.cp1 18390 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-p0 18391 df-p1 18392 df-oposet 39176 |
| This theorem is referenced by: 1cvrjat 39476 doch0 41359 |
| Copyright terms: Public domain | W3C validator |