Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc0 Structured version   Visualization version   GIF version

Theorem opoc0 39221
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc0 (𝐾 ∈ OP → ( 0 ) = 1 )

Proof of Theorem opoc0
StepHypRef Expression
1 opoc1.z . . 3 0 = (0.‘𝐾)
2 opoc1.u . . 3 1 = (1.‘𝐾)
3 opoc1.o . . 3 = (oc‘𝐾)
41, 2, 3opoc1 39220 . 2 (𝐾 ∈ OP → ( 1 ) = 0 )
5 eqid 2735 . . . 4 (Base‘𝐾) = (Base‘𝐾)
65, 2op1cl 39203 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
75, 1op0cl 39202 . . 3 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
85, 3opcon1b 39216 . . 3 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
96, 7, 8mpd3an23 1465 . 2 (𝐾 ∈ OP → (( 1 ) = 0 ↔ ( 0 ) = 1 ))
104, 9mpbid 232 1 (𝐾 ∈ OP → ( 0 ) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cfv 6531  Basecbs 17228  occoc 17279  0.cp0 18433  1.cp1 18434  OPcops 39190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-proset 18306  df-poset 18325  df-lub 18356  df-glb 18357  df-p0 18435  df-p1 18436  df-oposet 39194
This theorem is referenced by:  1cvrjat  39494  doch0  41377
  Copyright terms: Public domain W3C validator