Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon2b Structured version   Visualization version   GIF version

Theorem opcon2b 37211
Description: Orthocomplement contraposition law. (negcon2 11274 analog.) (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon2b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))

Proof of Theorem opcon2b
StepHypRef Expression
1 opoccl.b . . . . 5 𝐵 = (Base‘𝐾)
2 opoccl.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 37208 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
433adant2 1130 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
51, 2opcon3b 37210 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 = ( 𝑌) ↔ ( ‘( 𝑌)) = ( 𝑋)))
64, 5syld3an3 1408 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ ( ‘( 𝑌)) = ( 𝑋)))
71, 2opococ 37209 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
873adant2 1130 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
98eqeq1d 2740 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑌)) = ( 𝑋) ↔ 𝑌 = ( 𝑋)))
106, 9bitrd 278 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  Basecbs 16912  occoc 16970  OPcops 37186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278  df-oposet 37190
This theorem is referenced by:  opcon1b  37212  riotaocN  37223  glbconxN  37392
  Copyright terms: Public domain W3C validator