| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon2b | Structured version Visualization version GIF version | ||
| Description: Orthocomplement contraposition law. (negcon2 11414 analog.) (Contributed by NM, 16-Jan-2012.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opcon2b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | 1, 2 | opoccl 39239 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 5 | 1, 2 | opcon3b 39241 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ ( ⊥ ‘( ⊥ ‘𝑌)) = ( ⊥ ‘𝑋))) |
| 6 | 4, 5 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ ( ⊥ ‘( ⊥ ‘𝑌)) = ( ⊥ ‘𝑋))) |
| 7 | 1, 2 | opococ 39240 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 9 | 8 | eqeq1d 2733 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑌)) = ( ⊥ ‘𝑋) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
| 10 | 6, 9 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 occoc 17169 OPcops 39217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-ov 7349 df-oposet 39221 |
| This theorem is referenced by: opcon1b 39243 riotaocN 39254 glbconxN 39423 |
| Copyright terms: Public domain | W3C validator |