Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon2b Structured version   Visualization version   GIF version

Theorem opcon2b 39190
Description: Orthocomplement contraposition law. (negcon2 11475 analog.) (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon2b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))

Proof of Theorem opcon2b
StepHypRef Expression
1 opoccl.b . . . . 5 𝐵 = (Base‘𝐾)
2 opoccl.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 39187 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
433adant2 1131 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
51, 2opcon3b 39189 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 = ( 𝑌) ↔ ( ‘( 𝑌)) = ( 𝑋)))
64, 5syld3an3 1411 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ ( ‘( 𝑌)) = ( 𝑋)))
71, 2opococ 39188 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
873adant2 1131 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
98eqeq1d 2731 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑌)) = ( 𝑋) ↔ 𝑌 = ( 𝑋)))
106, 9bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ( 𝑌) ↔ 𝑌 = ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  Basecbs 17179  occoc 17228  OPcops 39165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390  df-oposet 39169
This theorem is referenced by:  opcon1b  39191  riotaocN  39202  glbconxN  39372
  Copyright terms: Public domain W3C validator