| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon2b | Structured version Visualization version GIF version | ||
| Description: Orthocomplement contraposition law. (negcon2 11536 analog.) (Contributed by NM, 16-Jan-2012.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opcon2b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | 1, 2 | opoccl 39212 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 5 | 1, 2 | opcon3b 39214 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ ( ⊥ ‘( ⊥ ‘𝑌)) = ( ⊥ ‘𝑋))) |
| 6 | 4, 5 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ ( ⊥ ‘( ⊥ ‘𝑌)) = ( ⊥ ‘𝑋))) |
| 7 | 1, 2 | opococ 39213 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) |
| 9 | 8 | eqeq1d 2737 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑌)) = ( ⊥ ‘𝑋) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
| 10 | 6, 9 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = ( ⊥ ‘𝑌) ↔ 𝑌 = ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 occoc 17279 OPcops 39190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-oposet 39194 |
| This theorem is referenced by: opcon1b 39216 riotaocN 39227 glbconxN 39397 |
| Copyright terms: Public domain | W3C validator |