MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negcon1 Structured version   Visualization version   GIF version

Theorem negcon1 11588
Description: Negative contraposition law. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
negcon1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))

Proof of Theorem negcon1
StepHypRef Expression
1 negcl 11536 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 neg11 11587 . . . 4 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵))
31, 2sylan 579 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵))
4 negneg 11586 . . . . 5 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
54adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐴 = 𝐴)
65eqeq1d 2742 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵𝐴 = -𝐵))
73, 6bitr3d 281 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵𝐴 = -𝐵))
8 eqcom 2747 . 2 (𝐴 = -𝐵 ↔ -𝐵 = 𝐴)
97, 8bitrdi 287 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cc 11182  -cneg 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523
This theorem is referenced by:  negcon2  11589  negcon1i  11618  negcon1d  11641  elznn0  12654
  Copyright terms: Public domain W3C validator