Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negcon1 | Structured version Visualization version GIF version |
Description: Negative contraposition law. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
negcon1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11294 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | neg11 11345 | . . . 4 ⊢ ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵)) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵)) |
4 | negneg 11344 | . . . . 5 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐴 = 𝐴) |
6 | 5 | eqeq1d 2739 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ 𝐴 = -𝐵)) |
7 | 3, 6 | bitr3d 280 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ 𝐴 = -𝐵)) |
8 | eqcom 2744 | . 2 ⊢ (𝐴 = -𝐵 ↔ -𝐵 = 𝐴) | |
9 | 7, 8 | bitrdi 286 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ℂcc 10942 -cneg 11279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-ltxr 11087 df-sub 11280 df-neg 11281 |
This theorem is referenced by: negcon2 11347 negcon1i 11376 negcon1d 11399 elznn0 12407 |
Copyright terms: Public domain | W3C validator |