![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version |
Description: Closure of orthocomplement operation. (choccl 31335 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2735 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | eqid 2735 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | eqid 2735 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2735 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39164 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
9 | 8 | 3anidm23 1420 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
10 | 9 | simp1d 1141 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
11 | 10 | simp1d 1141 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 occoc 17306 joincjn 18369 meetcmee 18370 0.cp0 18481 1.cp1 18482 OPcops 39154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 df-oposet 39158 |
This theorem is referenced by: opcon2b 39179 oplecon3b 39182 oplecon1b 39183 opoc1 39184 opltcon3b 39186 opltcon1b 39187 opltcon2b 39188 riotaocN 39191 oldmm1 39199 oldmm2 39200 oldmm3N 39201 oldmm4 39202 oldmj1 39203 oldmj2 39204 oldmj3 39205 oldmj4 39206 olm11 39209 latmassOLD 39211 omllaw2N 39226 omllaw4 39228 cmtcomlemN 39230 cmt2N 39232 cmt3N 39233 cmt4N 39234 cmtbr2N 39235 cmtbr3N 39236 cmtbr4N 39237 lecmtN 39238 omlfh1N 39240 omlfh3N 39241 omlspjN 39243 cvrcon3b 39259 cvrcmp2 39266 atlatmstc 39301 glbconN 39359 glbconNOLD 39360 glbconxN 39361 cvrexch 39403 1cvrco 39455 1cvratex 39456 1cvrjat 39458 polval2N 39889 polsubN 39890 2polpmapN 39896 2polvalN 39897 poldmj1N 39911 pmapj2N 39912 polatN 39914 2polatN 39915 pnonsingN 39916 ispsubcl2N 39930 polsubclN 39935 poml4N 39936 pmapojoinN 39951 pl42lem1N 39962 lhpoc2N 39998 lhpocnle 39999 lhpmod2i2 40021 lhpmod6i1 40022 lhprelat3N 40023 trlcl 40147 trlle 40167 docaclN 41107 doca2N 41109 djajN 41120 dih1 41269 dih1dimatlem 41312 dochcl 41336 dochvalr3 41346 doch2val2 41347 dochss 41348 dochocss 41349 dochoc 41350 dochnoncon 41374 djhlj 41384 |
Copyright terms: Public domain | W3C validator |