![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version |
Description: Closure of orthocomplement operation. (choccl 30826 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b | β’ π΅ = (BaseβπΎ) |
opoccl.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
opoccl | β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2730 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
3 | opoccl.o | . . . . 5 β’ β₯ = (ocβπΎ) | |
4 | eqid 2730 | . . . . 5 β’ (joinβπΎ) = (joinβπΎ) | |
5 | eqid 2730 | . . . . 5 β’ (meetβπΎ) = (meetβπΎ) | |
6 | eqid 2730 | . . . . 5 β’ (0.βπΎ) = (0.βπΎ) | |
7 | eqid 2730 | . . . . 5 β’ (1.βπΎ) = (1.βπΎ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 38355 | . . . 4 β’ ((πΎ β OP β§ π β π΅ β§ π β π΅) β ((( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ))) β§ (π(joinβπΎ)( β₯ βπ)) = (1.βπΎ) β§ (π(meetβπΎ)( β₯ βπ)) = (0.βπΎ))) |
9 | 8 | 3anidm23 1419 | . . 3 β’ ((πΎ β OP β§ π β π΅) β ((( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ))) β§ (π(joinβπΎ)( β₯ βπ)) = (1.βπΎ) β§ (π(meetβπΎ)( β₯ βπ)) = (0.βπΎ))) |
10 | 9 | simp1d 1140 | . 2 β’ ((πΎ β OP β§ π β π΅) β (( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ)))) |
11 | 10 | simp1d 1140 | 1 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 lecple 17208 occoc 17209 joincjn 18268 meetcmee 18269 0.cp0 18380 1.cp1 18381 OPcops 38345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-dm 5685 df-iota 6494 df-fv 6550 df-ov 7414 df-oposet 38349 |
This theorem is referenced by: opcon2b 38370 oplecon3b 38373 oplecon1b 38374 opoc1 38375 opltcon3b 38377 opltcon1b 38378 opltcon2b 38379 riotaocN 38382 oldmm1 38390 oldmm2 38391 oldmm3N 38392 oldmm4 38393 oldmj1 38394 oldmj2 38395 oldmj3 38396 oldmj4 38397 olm11 38400 latmassOLD 38402 omllaw2N 38417 omllaw4 38419 cmtcomlemN 38421 cmt2N 38423 cmt3N 38424 cmt4N 38425 cmtbr2N 38426 cmtbr3N 38427 cmtbr4N 38428 lecmtN 38429 omlfh1N 38431 omlfh3N 38432 omlspjN 38434 cvrcon3b 38450 cvrcmp2 38457 atlatmstc 38492 glbconN 38550 glbconNOLD 38551 glbconxN 38552 cvrexch 38594 1cvrco 38646 1cvratex 38647 1cvrjat 38649 polval2N 39080 polsubN 39081 2polpmapN 39087 2polvalN 39088 poldmj1N 39102 pmapj2N 39103 polatN 39105 2polatN 39106 pnonsingN 39107 ispsubcl2N 39121 polsubclN 39126 poml4N 39127 pmapojoinN 39142 pl42lem1N 39153 lhpoc2N 39189 lhpocnle 39190 lhpmod2i2 39212 lhpmod6i1 39213 lhprelat3N 39214 trlcl 39338 trlle 39358 docaclN 40298 doca2N 40300 djajN 40311 dih1 40460 dih1dimatlem 40503 dochcl 40527 dochvalr3 40537 doch2val2 40538 dochss 40539 dochocss 40540 dochoc 40541 dochnoncon 40565 djhlj 40575 |
Copyright terms: Public domain | W3C validator |