| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version | ||
| Description: Closure of orthocomplement operation. (choccl 31287 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2735 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2735 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39200 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 occoc 17279 joincjn 18323 meetcmee 18324 0.cp0 18433 1.cp1 18434 OPcops 39190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 df-oposet 39194 |
| This theorem is referenced by: opcon2b 39215 oplecon3b 39218 oplecon1b 39219 opoc1 39220 opltcon3b 39222 opltcon1b 39223 opltcon2b 39224 riotaocN 39227 oldmm1 39235 oldmm2 39236 oldmm3N 39237 oldmm4 39238 oldmj1 39239 oldmj2 39240 oldmj3 39241 oldmj4 39242 olm11 39245 latmassOLD 39247 omllaw2N 39262 omllaw4 39264 cmtcomlemN 39266 cmt2N 39268 cmt3N 39269 cmt4N 39270 cmtbr2N 39271 cmtbr3N 39272 cmtbr4N 39273 lecmtN 39274 omlfh1N 39276 omlfh3N 39277 omlspjN 39279 cvrcon3b 39295 cvrcmp2 39302 atlatmstc 39337 glbconN 39395 glbconNOLD 39396 glbconxN 39397 cvrexch 39439 1cvrco 39491 1cvratex 39492 1cvrjat 39494 polval2N 39925 polsubN 39926 2polpmapN 39932 2polvalN 39933 poldmj1N 39947 pmapj2N 39948 polatN 39950 2polatN 39951 pnonsingN 39952 ispsubcl2N 39966 polsubclN 39971 poml4N 39972 pmapojoinN 39987 pl42lem1N 39998 lhpoc2N 40034 lhpocnle 40035 lhpmod2i2 40057 lhpmod6i1 40058 lhprelat3N 40059 trlcl 40183 trlle 40203 docaclN 41143 doca2N 41145 djajN 41156 dih1 41305 dih1dimatlem 41348 dochcl 41372 dochvalr3 41382 doch2val2 41383 dochss 41384 dochocss 41385 dochoc 41386 dochnoncon 41410 djhlj 41420 |
| Copyright terms: Public domain | W3C validator |