| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version | ||
| Description: Closure of orthocomplement operation. (choccl 31242 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39182 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 occoc 17235 joincjn 18279 meetcmee 18280 0.cp0 18389 1.cp1 18390 OPcops 39172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-oposet 39176 |
| This theorem is referenced by: opcon2b 39197 oplecon3b 39200 oplecon1b 39201 opoc1 39202 opltcon3b 39204 opltcon1b 39205 opltcon2b 39206 riotaocN 39209 oldmm1 39217 oldmm2 39218 oldmm3N 39219 oldmm4 39220 oldmj1 39221 oldmj2 39222 oldmj3 39223 oldmj4 39224 olm11 39227 latmassOLD 39229 omllaw2N 39244 omllaw4 39246 cmtcomlemN 39248 cmt2N 39250 cmt3N 39251 cmt4N 39252 cmtbr2N 39253 cmtbr3N 39254 cmtbr4N 39255 lecmtN 39256 omlfh1N 39258 omlfh3N 39259 omlspjN 39261 cvrcon3b 39277 cvrcmp2 39284 atlatmstc 39319 glbconN 39377 glbconNOLD 39378 glbconxN 39379 cvrexch 39421 1cvrco 39473 1cvratex 39474 1cvrjat 39476 polval2N 39907 polsubN 39908 2polpmapN 39914 2polvalN 39915 poldmj1N 39929 pmapj2N 39930 polatN 39932 2polatN 39933 pnonsingN 39934 ispsubcl2N 39948 polsubclN 39953 poml4N 39954 pmapojoinN 39969 pl42lem1N 39980 lhpoc2N 40016 lhpocnle 40017 lhpmod2i2 40039 lhpmod6i1 40040 lhprelat3N 40041 trlcl 40165 trlle 40185 docaclN 41125 doca2N 41127 djajN 41138 dih1 41287 dih1dimatlem 41330 dochcl 41354 dochvalr3 41364 doch2val2 41365 dochss 41366 dochocss 41367 dochoc 41368 dochnoncon 41392 djhlj 41402 |
| Copyright terms: Public domain | W3C validator |