| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version | ||
| Description: Closure of orthocomplement operation. (choccl 31286 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39291 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 0.cp0 18327 1.cp1 18328 OPcops 39281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 df-ov 7349 df-oposet 39285 |
| This theorem is referenced by: opcon2b 39306 oplecon3b 39309 oplecon1b 39310 opoc1 39311 opltcon3b 39313 opltcon1b 39314 opltcon2b 39315 riotaocN 39318 oldmm1 39326 oldmm2 39327 oldmm3N 39328 oldmm4 39329 oldmj1 39330 oldmj2 39331 oldmj3 39332 oldmj4 39333 olm11 39336 latmassOLD 39338 omllaw2N 39353 omllaw4 39355 cmtcomlemN 39357 cmt2N 39359 cmt3N 39360 cmt4N 39361 cmtbr2N 39362 cmtbr3N 39363 cmtbr4N 39364 lecmtN 39365 omlfh1N 39367 omlfh3N 39368 omlspjN 39370 cvrcon3b 39386 cvrcmp2 39393 atlatmstc 39428 glbconN 39486 glbconxN 39487 cvrexch 39529 1cvrco 39581 1cvratex 39582 1cvrjat 39584 polval2N 40015 polsubN 40016 2polpmapN 40022 2polvalN 40023 poldmj1N 40037 pmapj2N 40038 polatN 40040 2polatN 40041 pnonsingN 40042 ispsubcl2N 40056 polsubclN 40061 poml4N 40062 pmapojoinN 40077 pl42lem1N 40088 lhpoc2N 40124 lhpocnle 40125 lhpmod2i2 40147 lhpmod6i1 40148 lhprelat3N 40149 trlcl 40273 trlle 40293 docaclN 41233 doca2N 41235 djajN 41246 dih1 41395 dih1dimatlem 41438 dochcl 41462 dochvalr3 41472 doch2val2 41473 dochss 41474 dochocss 41475 dochoc 41476 dochnoncon 41500 djhlj 41510 |
| Copyright terms: Public domain | W3C validator |