![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version |
Description: Closure of orthocomplement operation. (choccl 31338 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2740 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2740 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | eqid 2740 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | eqid 2740 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2740 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39138 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
9 | 8 | 3anidm23 1421 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
10 | 9 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
11 | 10 | simp1d 1142 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 occoc 17319 joincjn 18381 meetcmee 18382 0.cp0 18493 1.cp1 18494 OPcops 39128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oposet 39132 |
This theorem is referenced by: opcon2b 39153 oplecon3b 39156 oplecon1b 39157 opoc1 39158 opltcon3b 39160 opltcon1b 39161 opltcon2b 39162 riotaocN 39165 oldmm1 39173 oldmm2 39174 oldmm3N 39175 oldmm4 39176 oldmj1 39177 oldmj2 39178 oldmj3 39179 oldmj4 39180 olm11 39183 latmassOLD 39185 omllaw2N 39200 omllaw4 39202 cmtcomlemN 39204 cmt2N 39206 cmt3N 39207 cmt4N 39208 cmtbr2N 39209 cmtbr3N 39210 cmtbr4N 39211 lecmtN 39212 omlfh1N 39214 omlfh3N 39215 omlspjN 39217 cvrcon3b 39233 cvrcmp2 39240 atlatmstc 39275 glbconN 39333 glbconNOLD 39334 glbconxN 39335 cvrexch 39377 1cvrco 39429 1cvratex 39430 1cvrjat 39432 polval2N 39863 polsubN 39864 2polpmapN 39870 2polvalN 39871 poldmj1N 39885 pmapj2N 39886 polatN 39888 2polatN 39889 pnonsingN 39890 ispsubcl2N 39904 polsubclN 39909 poml4N 39910 pmapojoinN 39925 pl42lem1N 39936 lhpoc2N 39972 lhpocnle 39973 lhpmod2i2 39995 lhpmod6i1 39996 lhprelat3N 39997 trlcl 40121 trlle 40141 docaclN 41081 doca2N 41083 djajN 41094 dih1 41243 dih1dimatlem 41286 dochcl 41310 dochvalr3 41320 doch2val2 41321 dochss 41322 dochocss 41323 dochoc 41324 dochnoncon 41348 djhlj 41358 |
Copyright terms: Public domain | W3C validator |