| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version | ||
| Description: Closure of orthocomplement operation. (choccl 31235 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39175 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 occoc 17228 joincjn 18272 meetcmee 18273 0.cp0 18382 1.cp1 18383 OPcops 39165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oposet 39169 |
| This theorem is referenced by: opcon2b 39190 oplecon3b 39193 oplecon1b 39194 opoc1 39195 opltcon3b 39197 opltcon1b 39198 opltcon2b 39199 riotaocN 39202 oldmm1 39210 oldmm2 39211 oldmm3N 39212 oldmm4 39213 oldmj1 39214 oldmj2 39215 oldmj3 39216 oldmj4 39217 olm11 39220 latmassOLD 39222 omllaw2N 39237 omllaw4 39239 cmtcomlemN 39241 cmt2N 39243 cmt3N 39244 cmt4N 39245 cmtbr2N 39246 cmtbr3N 39247 cmtbr4N 39248 lecmtN 39249 omlfh1N 39251 omlfh3N 39252 omlspjN 39254 cvrcon3b 39270 cvrcmp2 39277 atlatmstc 39312 glbconN 39370 glbconNOLD 39371 glbconxN 39372 cvrexch 39414 1cvrco 39466 1cvratex 39467 1cvrjat 39469 polval2N 39900 polsubN 39901 2polpmapN 39907 2polvalN 39908 poldmj1N 39922 pmapj2N 39923 polatN 39925 2polatN 39926 pnonsingN 39927 ispsubcl2N 39941 polsubclN 39946 poml4N 39947 pmapojoinN 39962 pl42lem1N 39973 lhpoc2N 40009 lhpocnle 40010 lhpmod2i2 40032 lhpmod6i1 40033 lhprelat3N 40034 trlcl 40158 trlle 40178 docaclN 41118 doca2N 41120 djajN 41131 dih1 41280 dih1dimatlem 41323 dochcl 41347 dochvalr3 41357 doch2val2 41358 dochss 41359 dochocss 41360 dochoc 41361 dochnoncon 41385 djhlj 41395 |
| Copyright terms: Public domain | W3C validator |