Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version |
Description: Closure of orthocomplement operation. (choccl 29677 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2739 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2739 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | eqid 2739 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | eqid 2739 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2739 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 37203 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
9 | 8 | 3anidm23 1420 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
10 | 9 | simp1d 1141 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
11 | 10 | simp1d 1141 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 lecple 16978 occoc 16979 joincjn 18038 meetcmee 18039 0.cp0 18150 1.cp1 18151 OPcops 37193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-dm 5600 df-iota 6395 df-fv 6445 df-ov 7287 df-oposet 37197 |
This theorem is referenced by: opcon2b 37218 oplecon3b 37221 oplecon1b 37222 opoc1 37223 opltcon3b 37225 opltcon1b 37226 opltcon2b 37227 riotaocN 37230 oldmm1 37238 oldmm2 37239 oldmm3N 37240 oldmm4 37241 oldmj1 37242 oldmj2 37243 oldmj3 37244 oldmj4 37245 olm11 37248 latmassOLD 37250 omllaw2N 37265 omllaw4 37267 cmtcomlemN 37269 cmt2N 37271 cmt3N 37272 cmt4N 37273 cmtbr2N 37274 cmtbr3N 37275 cmtbr4N 37276 lecmtN 37277 omlfh1N 37279 omlfh3N 37280 omlspjN 37282 cvrcon3b 37298 cvrcmp2 37305 atlatmstc 37340 glbconN 37398 glbconxN 37399 cvrexch 37441 1cvrco 37493 1cvratex 37494 1cvrjat 37496 polval2N 37927 polsubN 37928 2polpmapN 37934 2polvalN 37935 poldmj1N 37949 pmapj2N 37950 polatN 37952 2polatN 37953 pnonsingN 37954 ispsubcl2N 37968 polsubclN 37973 poml4N 37974 pmapojoinN 37989 pl42lem1N 38000 lhpoc2N 38036 lhpocnle 38037 lhpmod2i2 38059 lhpmod6i1 38060 lhprelat3N 38061 trlcl 38185 trlle 38205 docaclN 39145 doca2N 39147 djajN 39158 dih1 39307 dih1dimatlem 39350 dochcl 39374 dochvalr3 39384 doch2val2 39385 dochss 39386 dochocss 39387 dochoc 39388 dochnoncon 39412 djhlj 39422 |
Copyright terms: Public domain | W3C validator |