![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version |
Description: Closure of orthocomplement operation. (choccl 30547 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b | β’ π΅ = (BaseβπΎ) |
opoccl.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
opoccl | β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2733 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
3 | opoccl.o | . . . . 5 β’ β₯ = (ocβπΎ) | |
4 | eqid 2733 | . . . . 5 β’ (joinβπΎ) = (joinβπΎ) | |
5 | eqid 2733 | . . . . 5 β’ (meetβπΎ) = (meetβπΎ) | |
6 | eqid 2733 | . . . . 5 β’ (0.βπΎ) = (0.βπΎ) | |
7 | eqid 2733 | . . . . 5 β’ (1.βπΎ) = (1.βπΎ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 38041 | . . . 4 β’ ((πΎ β OP β§ π β π΅ β§ π β π΅) β ((( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ))) β§ (π(joinβπΎ)( β₯ βπ)) = (1.βπΎ) β§ (π(meetβπΎ)( β₯ βπ)) = (0.βπΎ))) |
9 | 8 | 3anidm23 1422 | . . 3 β’ ((πΎ β OP β§ π β π΅) β ((( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ))) β§ (π(joinβπΎ)( β₯ βπ)) = (1.βπΎ) β§ (π(meetβπΎ)( β₯ βπ)) = (0.βπΎ))) |
10 | 9 | simp1d 1143 | . 2 β’ ((πΎ β OP β§ π β π΅) β (( β₯ βπ) β π΅ β§ ( β₯ β( β₯ βπ)) = π β§ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)( β₯ βπ)))) |
11 | 10 | simp1d 1143 | 1 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 class class class wbr 5148 βcfv 6541 (class class class)co 7406 Basecbs 17141 lecple 17201 occoc 17202 joincjn 18261 meetcmee 18262 0.cp0 18373 1.cp1 18374 OPcops 38031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-dm 5686 df-iota 6493 df-fv 6549 df-ov 7409 df-oposet 38035 |
This theorem is referenced by: opcon2b 38056 oplecon3b 38059 oplecon1b 38060 opoc1 38061 opltcon3b 38063 opltcon1b 38064 opltcon2b 38065 riotaocN 38068 oldmm1 38076 oldmm2 38077 oldmm3N 38078 oldmm4 38079 oldmj1 38080 oldmj2 38081 oldmj3 38082 oldmj4 38083 olm11 38086 latmassOLD 38088 omllaw2N 38103 omllaw4 38105 cmtcomlemN 38107 cmt2N 38109 cmt3N 38110 cmt4N 38111 cmtbr2N 38112 cmtbr3N 38113 cmtbr4N 38114 lecmtN 38115 omlfh1N 38117 omlfh3N 38118 omlspjN 38120 cvrcon3b 38136 cvrcmp2 38143 atlatmstc 38178 glbconN 38236 glbconNOLD 38237 glbconxN 38238 cvrexch 38280 1cvrco 38332 1cvratex 38333 1cvrjat 38335 polval2N 38766 polsubN 38767 2polpmapN 38773 2polvalN 38774 poldmj1N 38788 pmapj2N 38789 polatN 38791 2polatN 38792 pnonsingN 38793 ispsubcl2N 38807 polsubclN 38812 poml4N 38813 pmapojoinN 38828 pl42lem1N 38839 lhpoc2N 38875 lhpocnle 38876 lhpmod2i2 38898 lhpmod6i1 38899 lhprelat3N 38900 trlcl 39024 trlle 39044 docaclN 39984 doca2N 39986 djajN 39997 dih1 40146 dih1dimatlem 40189 dochcl 40213 dochvalr3 40223 doch2val2 40224 dochss 40225 dochocss 40226 dochoc 40227 dochnoncon 40251 djhlj 40261 |
Copyright terms: Public domain | W3C validator |