![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version |
Description: Closure of orthocomplement operation. (choccl 28864 analog.) (Contributed by NM, 20-Oct-2011.) |
Ref | Expression |
---|---|
opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2779 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2779 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | eqid 2779 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
6 | eqid 2779 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
7 | eqid 2779 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 35760 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
9 | 8 | 3anidm23 1401 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
10 | 9 | simp1d 1122 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
11 | 10 | simp1d 1122 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 lecple 16428 occoc 16429 joincjn 17412 meetcmee 17413 0.cp0 17505 1.cp1 17506 OPcops 35750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 ax-nul 5067 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-dm 5417 df-iota 6152 df-fv 6196 df-ov 6979 df-oposet 35754 |
This theorem is referenced by: opcon2b 35775 oplecon3b 35778 oplecon1b 35779 opoc1 35780 opltcon3b 35782 opltcon1b 35783 opltcon2b 35784 riotaocN 35787 oldmm1 35795 oldmm2 35796 oldmm3N 35797 oldmm4 35798 oldmj1 35799 oldmj2 35800 oldmj3 35801 oldmj4 35802 olm11 35805 latmassOLD 35807 omllaw2N 35822 omllaw4 35824 cmtcomlemN 35826 cmt2N 35828 cmt3N 35829 cmt4N 35830 cmtbr2N 35831 cmtbr3N 35832 cmtbr4N 35833 lecmtN 35834 omlfh1N 35836 omlfh3N 35837 omlspjN 35839 cvrcon3b 35855 cvrcmp2 35862 atlatmstc 35897 glbconN 35955 glbconxN 35956 cvrexch 35998 1cvrco 36050 1cvratex 36051 1cvrjat 36053 polval2N 36484 polsubN 36485 2polpmapN 36491 2polvalN 36492 poldmj1N 36506 pmapj2N 36507 polatN 36509 2polatN 36510 pnonsingN 36511 ispsubcl2N 36525 polsubclN 36530 poml4N 36531 pmapojoinN 36546 pl42lem1N 36557 lhpoc2N 36593 lhpocnle 36594 lhpmod2i2 36616 lhpmod6i1 36617 lhprelat3N 36618 trlcl 36742 trlle 36762 docaclN 37702 doca2N 37704 djajN 37715 dih1 37864 dih1dimatlem 37907 dochcl 37931 dochvalr3 37941 doch2val2 37942 dochss 37943 dochocss 37944 dochoc 37945 dochnoncon 37969 djhlj 37979 |
Copyright terms: Public domain | W3C validator |