| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoccl | Structured version Visualization version GIF version | ||
| Description: Closure of orthocomplement operation. (choccl 31250 analog.) (Contributed by NM, 20-Oct-2011.) |
| Ref | Expression |
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) |
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoccl | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | opoccl.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 39165 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 9 | 8 | 3anidm23 1423 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( ⊥ ‘𝑋)) = (0.‘𝐾))) |
| 10 | 9 | simp1d 1142 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋)))) |
| 11 | 10 | simp1d 1142 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 0.cp0 18327 1.cp1 18328 OPcops 39155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 df-oposet 39159 |
| This theorem is referenced by: opcon2b 39180 oplecon3b 39183 oplecon1b 39184 opoc1 39185 opltcon3b 39187 opltcon1b 39188 opltcon2b 39189 riotaocN 39192 oldmm1 39200 oldmm2 39201 oldmm3N 39202 oldmm4 39203 oldmj1 39204 oldmj2 39205 oldmj3 39206 oldmj4 39207 olm11 39210 latmassOLD 39212 omllaw2N 39227 omllaw4 39229 cmtcomlemN 39231 cmt2N 39233 cmt3N 39234 cmt4N 39235 cmtbr2N 39236 cmtbr3N 39237 cmtbr4N 39238 lecmtN 39239 omlfh1N 39241 omlfh3N 39242 omlspjN 39244 cvrcon3b 39260 cvrcmp2 39267 atlatmstc 39302 glbconN 39360 glbconxN 39361 cvrexch 39403 1cvrco 39455 1cvratex 39456 1cvrjat 39458 polval2N 39889 polsubN 39890 2polpmapN 39896 2polvalN 39897 poldmj1N 39911 pmapj2N 39912 polatN 39914 2polatN 39915 pnonsingN 39916 ispsubcl2N 39930 polsubclN 39935 poml4N 39936 pmapojoinN 39951 pl42lem1N 39962 lhpoc2N 39998 lhpocnle 39999 lhpmod2i2 40021 lhpmod6i1 40022 lhprelat3N 40023 trlcl 40147 trlle 40167 docaclN 41107 doca2N 41109 djajN 41120 dih1 41269 dih1dimatlem 41312 dochcl 41336 dochvalr3 41346 doch2val2 41347 dochss 41348 dochocss 41349 dochoc 41350 dochnoncon 41374 djhlj 41384 |
| Copyright terms: Public domain | W3C validator |