Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon3b Structured version   Visualization version   GIF version

Theorem opcon3b 37137
Description: Contraposition law for orthoposets. (chcon3i 29729 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ( 𝑌) = ( 𝑋)))

Proof of Theorem opcon3b
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑌 = 𝑋 → ( 𝑌) = ( 𝑋))
21eqcoms 2746 . 2 (𝑋 = 𝑌 → ( 𝑌) = ( 𝑋))
3 fveq2 6756 . . . 4 (( 𝑋) = ( 𝑌) → ( ‘( 𝑋)) = ( ‘( 𝑌)))
43eqcoms 2746 . . 3 (( 𝑌) = ( 𝑋) → ( ‘( 𝑋)) = ( ‘( 𝑌)))
5 opoccl.b . . . . . 6 𝐵 = (Base‘𝐾)
6 opoccl.o . . . . . 6 = (oc‘𝐾)
75, 6opococ 37136 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
873adant3 1130 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
95, 6opococ 37136 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1093adant2 1129 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
118, 10eqeq12d 2754 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑋)) = ( ‘( 𝑌)) ↔ 𝑋 = 𝑌))
124, 11syl5ib 243 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) = ( 𝑋) → 𝑋 = 𝑌))
132, 12impbid2 225 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ( 𝑌) = ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  occoc 16896  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oposet 37117
This theorem is referenced by:  opcon2b  37138  omllaw4  37187  cmtbr2N  37194  cvrcmp2  37225  lhpmod2i2  37979  lhpmod6i1  37980
  Copyright terms: Public domain W3C validator