|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opcon3b | Structured version Visualization version GIF version | ||
| Description: Contraposition law for orthoposets. (chcon3i 31485 analog.) (Contributed by NM, 8-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| opoccl.b | ⊢ 𝐵 = (Base‘𝐾) | 
| opoccl.o | ⊢ ⊥ = (oc‘𝐾) | 
| Ref | Expression | 
|---|---|
| opcon3b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 6906 | . . 3 ⊢ (𝑌 = 𝑋 → ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋)) | |
| 2 | 1 | eqcoms 2745 | . 2 ⊢ (𝑋 = 𝑌 → ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋)) | 
| 3 | fveq2 6906 | . . . 4 ⊢ (( ⊥ ‘𝑋) = ( ⊥ ‘𝑌) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) | |
| 4 | 3 | eqcoms 2745 | . . 3 ⊢ (( ⊥ ‘𝑌) = ( ⊥ ‘𝑋) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌))) | 
| 5 | opoccl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | opoccl.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
| 7 | 5, 6 | opococ 39196 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | 
| 8 | 7 | 3adant3 1133 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | 
| 9 | 5, 6 | opococ 39196 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) | 
| 10 | 9 | 3adant2 1132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) | 
| 11 | 8, 10 | eqeq12d 2753 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘( ⊥ ‘𝑌)) ↔ 𝑋 = 𝑌)) | 
| 12 | 4, 11 | imbitrid 244 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) = ( ⊥ ‘𝑋) → 𝑋 = 𝑌)) | 
| 13 | 2, 12 | impbid2 226 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ( ⊥ ‘𝑌) = ( ⊥ ‘𝑋))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 Basecbs 17247 occoc 17305 OPcops 39173 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 df-oposet 39177 | 
| This theorem is referenced by: opcon2b 39198 omllaw4 39247 cmtbr2N 39254 cvrcmp2 39285 lhpmod2i2 40040 lhpmod6i1 40041 | 
| Copyright terms: Public domain | W3C validator |