Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opcon3b Structured version   Visualization version   GIF version

Theorem opcon3b 39197
Description: Contraposition law for orthoposets. (chcon3i 31485 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ( 𝑌) = ( 𝑋)))

Proof of Theorem opcon3b
StepHypRef Expression
1 fveq2 6906 . . 3 (𝑌 = 𝑋 → ( 𝑌) = ( 𝑋))
21eqcoms 2745 . 2 (𝑋 = 𝑌 → ( 𝑌) = ( 𝑋))
3 fveq2 6906 . . . 4 (( 𝑋) = ( 𝑌) → ( ‘( 𝑋)) = ( ‘( 𝑌)))
43eqcoms 2745 . . 3 (( 𝑌) = ( 𝑋) → ( ‘( 𝑋)) = ( ‘( 𝑌)))
5 opoccl.b . . . . . 6 𝐵 = (Base‘𝐾)
6 opoccl.o . . . . . 6 = (oc‘𝐾)
75, 6opococ 39196 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
873adant3 1133 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
95, 6opococ 39196 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
1093adant2 1132 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
118, 10eqeq12d 2753 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( ‘( 𝑋)) = ( ‘( 𝑌)) ↔ 𝑋 = 𝑌))
124, 11imbitrid 244 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) = ( 𝑋) → 𝑋 = 𝑌))
132, 12impbid2 226 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ( 𝑌) = ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  Basecbs 17247  occoc 17305  OPcops 39173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-dm 5695  df-iota 6514  df-fv 6569  df-ov 7434  df-oposet 39177
This theorem is referenced by:  opcon2b  39198  omllaw4  39247  cmtbr2N  39254  cvrcmp2  39285  lhpmod2i2  40040  lhpmod6i1  40041
  Copyright terms: Public domain W3C validator