Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opococ Structured version   Visualization version   GIF version

Theorem opococ 37136
Description: Double negative law for orthoposets. (ococ 29669 analog.) (Contributed by NM, 13-Sep-2011.)
Hypotheses
Ref Expression
opoccl.b 𝐵 = (Base‘𝐾)
opoccl.o = (oc‘𝐾)
Assertion
Ref Expression
opococ ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)

Proof of Theorem opococ
StepHypRef Expression
1 opoccl.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
3 opoccl.o . . . . 5 = (oc‘𝐾)
4 eqid 2738 . . . . 5 (join‘𝐾) = (join‘𝐾)
5 eqid 2738 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
6 eqid 2738 . . . . 5 (0.‘𝐾) = (0.‘𝐾)
7 eqid 2738 . . . . 5 (1.‘𝐾) = (1.‘𝐾)
81, 2, 3, 4, 5, 6, 7oposlem 37123 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋(join‘𝐾)( 𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
983anidm23 1419 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))) ∧ (𝑋(join‘𝐾)( 𝑋)) = (1.‘𝐾) ∧ (𝑋(meet‘𝐾)( 𝑋)) = (0.‘𝐾)))
109simp1d 1140 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (( 𝑋) ∈ 𝐵 ∧ ( ‘( 𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( 𝑋)(le‘𝐾)( 𝑋))))
1110simp2d 1141 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  occoc 16896  joincjn 17944  meetcmee 17945  0.cp0 18056  1.cp1 18057  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oposet 37117
This theorem is referenced by:  opcon3b  37137  opcon2b  37138  oplecon3b  37141  oplecon1b  37142  opltcon1b  37146  opltcon2b  37147  oldmm2  37159  oldmm3N  37160  oldmm4  37161  oldmj1  37162  oldmj2  37163  oldmj3  37164  oldmj4  37165  olm11  37168  omllaw4  37187  cmt2N  37191  glbconN  37318  1cvratex  37414  1cvrjat  37416  polval2N  37847  2polpmapN  37854  2polvalN  37855  2polatN  37873  lhpoc2N  37956  doch2val2  39305  dochocss  39307  dochoc  39308
  Copyright terms: Public domain W3C validator