![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelco2g | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5866 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
2 | df-br 5149 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ∘ 𝐷)) | |
3 | df-br 5149 | . . . 4 ⊢ (𝐴𝐷𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐷) | |
4 | df-br 5149 | . . . 4 ⊢ (𝑥𝐶𝐵 ↔ ⟨𝑥, 𝐵⟩ ∈ 𝐶) | |
5 | 3, 4 | anbi12i 627 | . . 3 ⊢ ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶)) |
6 | 5 | exbii 1850 | . 2 ⊢ (∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶)) |
7 | 1, 2, 6 | 3bitr3g 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ⟨cop 4634 class class class wbr 5148 ∘ ccom 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-co 5685 |
This theorem is referenced by: dfco2 6244 dmfco 6987 dfatdmfcoafv2 45952 |
Copyright terms: Public domain | W3C validator |