Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelco2g | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5808 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
2 | df-br 5093 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷)) | |
3 | df-br 5093 | . . . 4 ⊢ (𝐴𝐷𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐷) | |
4 | df-br 5093 | . . . 4 ⊢ (𝑥𝐶𝐵 ↔ 〈𝑥, 𝐵〉 ∈ 𝐶) | |
5 | 3, 4 | anbi12i 627 | . . 3 ⊢ ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶)) |
6 | 5 | exbii 1849 | . 2 ⊢ (∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶)) |
7 | 1, 2, 6 | 3bitr3g 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 〈cop 4579 class class class wbr 5092 ∘ ccom 5624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-co 5629 |
This theorem is referenced by: dfco2 6183 dmfco 6920 dfatdmfcoafv2 45106 |
Copyright terms: Public domain | W3C validator |