![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelco2g | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5873 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
2 | df-br 5153 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ∘ 𝐷)) | |
3 | df-br 5153 | . . . 4 ⊢ (𝐴𝐷𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐷) | |
4 | df-br 5153 | . . . 4 ⊢ (𝑥𝐶𝐵 ↔ ⟨𝑥, 𝐵⟩ ∈ 𝐶) | |
5 | 3, 4 | anbi12i 626 | . . 3 ⊢ ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶)) |
6 | 5 | exbii 1842 | . 2 ⊢ (∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶)) |
7 | 1, 2, 6 | 3bitr3g 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐷 ∧ ⟨𝑥, 𝐵⟩ ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 ⟨cop 4638 class class class wbr 5152 ∘ ccom 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-co 5691 |
This theorem is referenced by: dfco2 6254 dmfco 6999 dfatdmfcoafv2 46663 |
Copyright terms: Public domain | W3C validator |