Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcogw | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
brcogw | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1147 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
2 | breq2 5097 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴𝐷𝑥 ↔ 𝐴𝐷𝑋)) | |
3 | breq1 5096 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝐵 ↔ 𝑋𝐶𝐵)) | |
4 | 2, 3 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵))) |
5 | 4 | spcegv 3545 | . . . 4 ⊢ (𝑋 ∈ 𝑍 → ((𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
6 | 5 | imp 407 | . . 3 ⊢ ((𝑋 ∈ 𝑍 ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
7 | 6 | 3ad2antl3 1186 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
8 | brcog 5809 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
9 | 8 | biimpar 478 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
10 | 1, 7, 9 | syl2an2r 682 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 class class class wbr 5093 ∘ ccom 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-co 5630 |
This theorem is referenced by: utop2nei 23509 utop3cls 23510 iunrelexpuztr 41700 frege96d 41730 frege98d 41734 |
Copyright terms: Public domain | W3C validator |