Step | Hyp | Ref
| Expression |
1 | | eldm2g 5797 |
. . . 4
⊢ (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ (𝐹 ∘ 𝐺))) |
2 | | opelco2g 5765 |
. . . . . 6
⊢ ((𝐴 ∈ dom 𝐺 ∧ 𝑦 ∈ V) → (〈𝐴, 𝑦〉 ∈ (𝐹 ∘ 𝐺) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
3 | 2 | elvd 3429 |
. . . . 5
⊢ (𝐴 ∈ dom 𝐺 → (〈𝐴, 𝑦〉 ∈ (𝐹 ∘ 𝐺) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
4 | 3 | exbidv 1925 |
. . . 4
⊢ (𝐴 ∈ dom 𝐺 → (∃𝑦〈𝐴, 𝑦〉 ∈ (𝐹 ∘ 𝐺) ↔ ∃𝑦∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
5 | 1, 4 | bitrd 278 |
. . 3
⊢ (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
6 | 5 | adantl 481 |
. 2
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
7 | | fvex 6769 |
. . . 4
⊢ (𝐺‘𝐴) ∈ V |
8 | 7 | eldm2 5799 |
. . 3
⊢ ((𝐺‘𝐴) ∈ dom 𝐹 ↔ ∃𝑦〈(𝐺‘𝐴), 𝑦〉 ∈ 𝐹) |
9 | | opeq1 4801 |
. . . . . . 7
⊢ (𝑥 = (𝐺‘𝐴) → 〈𝑥, 𝑦〉 = 〈(𝐺‘𝐴), 𝑦〉) |
10 | 9 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 = (𝐺‘𝐴) → (〈𝑥, 𝑦〉 ∈ 𝐹 ↔ 〈(𝐺‘𝐴), 𝑦〉 ∈ 𝐹)) |
11 | 7, 10 | ceqsexv 3469 |
. . . . 5
⊢
(∃𝑥(𝑥 = (𝐺‘𝐴) ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) ↔ 〈(𝐺‘𝐴), 𝑦〉 ∈ 𝐹) |
12 | | eqcom 2745 |
. . . . . . . 8
⊢ (𝑥 = (𝐺‘𝐴) ↔ (𝐺‘𝐴) = 𝑥) |
13 | | funopfvb 6807 |
. . . . . . . 8
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐺‘𝐴) = 𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐺)) |
14 | 12, 13 | syl5bb 282 |
. . . . . . 7
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝑥 = (𝐺‘𝐴) ↔ 〈𝐴, 𝑥〉 ∈ 𝐺)) |
15 | 14 | anbi1d 629 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝑥 = (𝐺‘𝐴) ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) ↔ (〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
16 | 15 | exbidv 1925 |
. . . . 5
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺‘𝐴) ∧ 〈𝑥, 𝑦〉 ∈ 𝐹) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
17 | 11, 16 | bitr3id 284 |
. . . 4
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → (〈(𝐺‘𝐴), 𝑦〉 ∈ 𝐹 ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
18 | 17 | exbidv 1925 |
. . 3
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → (∃𝑦〈(𝐺‘𝐴), 𝑦〉 ∈ 𝐹 ↔ ∃𝑦∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
19 | 8, 18 | syl5bb 282 |
. 2
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → ((𝐺‘𝐴) ∈ dom 𝐹 ↔ ∃𝑦∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐺 ∧ 〈𝑥, 𝑦〉 ∈ 𝐹))) |
20 | 6, 19 | bitr4d 281 |
1
⊢ ((Fun
𝐺 ∧ 𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺‘𝐴) ∈ dom 𝐹)) |