MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfco Structured version   Visualization version   GIF version

Theorem dmfco 6942
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))

Proof of Theorem dmfco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5860 . . . 4 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺)))
2 opelco2g 5828 . . . . . 6 ((𝐴 ∈ dom 𝐺𝑦 ∈ V) → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
32elvd 3455 . . . . 5 (𝐴 ∈ dom 𝐺 → (⟨𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
43exbidv 1925 . . . 4 (𝐴 ∈ dom 𝐺 → (∃𝑦𝐴, 𝑦⟩ ∈ (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
51, 4bitrd 279 . . 3 (𝐴 ∈ dom 𝐺 → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
65adantl 483 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 fvex 6860 . . . 4 (𝐺𝐴) ∈ V
87eldm2 5862 . . 3 ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹)
9 opeq1 4835 . . . . . . 7 (𝑥 = (𝐺𝐴) → ⟨𝑥, 𝑦⟩ = ⟨(𝐺𝐴), 𝑦⟩)
109eleq1d 2823 . . . . . 6 (𝑥 = (𝐺𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹))
117, 10ceqsexv 3497 . . . . 5 (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹)
12 eqcom 2744 . . . . . . . 8 (𝑥 = (𝐺𝐴) ↔ (𝐺𝐴) = 𝑥)
13 funopfvb 6903 . . . . . . . 8 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) = 𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1412, 13bitrid 283 . . . . . . 7 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝑥 = (𝐺𝐴) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐺))
1514anbi1d 631 . . . . . 6 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1615exbidv 1925 . . . . 5 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑥(𝑥 = (𝐺𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1711, 16bitr3id 285 . . . 4 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
1817exbidv 1925 . . 3 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (∃𝑦⟨(𝐺𝐴), 𝑦⟩ ∈ 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
198, 18bitrid 283 . 2 ((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐺𝐴) ∈ dom 𝐹 ↔ ∃𝑦𝑥(⟨𝐴, 𝑥⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
206, 19bitr4d 282 1 ((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3448  cop 4597  dom cdm 5638  ccom 5642  Fun wfun 6495  cfv 6501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6453  df-fun 6503  df-fn 6504  df-fv 6509
This theorem is referenced by:  hoicvr  44863  funressnfv  45351  dmfcoafv  45481  afvco2  45482
  Copyright terms: Public domain W3C validator