MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfco2 Structured version   Visualization version   GIF version

Theorem dfco2 6100
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
dfco2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfco2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6099 . 2 Rel (𝐴𝐵)
2 reliun 5691 . . 3 (Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∀𝑥 ∈ V Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
3 relxp 5575 . . . 4 Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
43a1i 11 . . 3 (𝑥 ∈ V → Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
52, 4mprgbir 3155 . 2 Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
6 opelco2g 5740 . . . 4 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)))
76el2v 3503 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
8 eliun 4925 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
9 rexv 3522 . . . 4 (∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
10 opelxp 5593 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})))
11 vex 3499 . . . . . . . . 9 𝑥 ∈ V
12 vex 3499 . . . . . . . . 9 𝑦 ∈ V
1311, 12elimasn 5956 . . . . . . . 8 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
1411, 12opelcnv 5754 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1513, 14bitri 277 . . . . . . 7 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
16 vex 3499 . . . . . . . 8 𝑧 ∈ V
1711, 16elimasn 5956 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
1815, 17anbi12i 628 . . . . . 6 ((𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
1910, 18bitri 277 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
2019exbii 1848 . . . 4 (∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
218, 9, 203bitrri 300 . . 3 (∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
227, 21bitri 277 . 2 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
231, 5, 22eqrelriiv 5665 1 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3141  Vcvv 3496  {csn 4569  cop 4575   ciun 4921   × cxp 5555  ccnv 5556  cima 5560  ccom 5561  Rel wrel 5562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-iun 4923  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570
This theorem is referenced by:  dfco2a  6101
  Copyright terms: Public domain W3C validator