MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfco2 Structured version   Visualization version   GIF version

Theorem dfco2 6266
Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.)
Assertion
Ref Expression
dfco2 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfco2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6128 . 2 Rel (𝐴𝐵)
2 reliun 5828 . . 3 (Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∀𝑥 ∈ V Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
3 relxp 5706 . . . 4 Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
43a1i 11 . . 3 (𝑥 ∈ V → Rel ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
52, 4mprgbir 3065 . 2 Rel 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
6 opelco2g 5880 . . . 4 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)))
76el2v 3484 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
8 eliun 4999 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
9 rexv 3506 . . . 4 (∃𝑥 ∈ V ⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
10 opelxp 5724 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})))
11 vex 3481 . . . . . . . . 9 𝑥 ∈ V
12 vex 3481 . . . . . . . . 9 𝑦 ∈ V
1311, 12elimasn 6109 . . . . . . . 8 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
1411, 12opelcnv 5894 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
1513, 14bitri 275 . . . . . . 7 (𝑦 ∈ (𝐵 “ {𝑥}) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵)
16 vex 3481 . . . . . . . 8 𝑧 ∈ V
1711, 16elimasn 6109 . . . . . . 7 (𝑧 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
1815, 17anbi12i 628 . . . . . 6 ((𝑦 ∈ (𝐵 “ {𝑥}) ∧ 𝑧 ∈ (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
1910, 18bitri 275 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
2019exbii 1844 . . . 4 (∃𝑥𝑦, 𝑧⟩ ∈ ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})) ↔ ∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
218, 9, 203bitrri 298 . . 3 (∃𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
227, 21bitri 275 . 2 (⟨𝑦, 𝑧⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥})))
231, 5, 22eqrelriiv 5802 1 (𝐴𝐵) = 𝑥 ∈ V ((𝐵 “ {𝑥}) × (𝐴 “ {𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wrex 3067  Vcvv 3477  {csn 4630  cop 4636   ciun 4995   × cxp 5686  ccnv 5687  cima 5691  ccom 5692  Rel wrel 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-iun 4997  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701
This theorem is referenced by:  dfco2a  6267
  Copyright terms: Public domain W3C validator