Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brab | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
Ref | Expression |
---|---|
opelopab.1 | ⊢ 𝐴 ∈ V |
opelopab.2 | ⊢ 𝐵 ∈ V |
opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brab.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brab | ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | brab.5 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
6 | 3, 4, 5 | brabg 5389 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
7 | 1, 2, 6 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 ∈ wcel 2112 Vcvv 3407 class class class wbr 5025 {copab 5087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pr 5291 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3409 df-dif 3857 df-un 3859 df-nul 4222 df-if 4414 df-sn 4516 df-pr 4518 df-op 4522 df-br 5026 df-opab 5088 |
This theorem is referenced by: opbrop 5610 f1oweALT 7670 frxp 7818 fnwelem 7823 dftpos4 7914 dfac3 9566 axdc2lem 9893 brdom7disj 9976 brdom6disj 9977 ordpipq 10387 ltresr 10585 shftfn 14465 2shfti 14472 ishpg 26637 brcgr 26778 ex-opab 28301 br8d 30457 br8 33224 br6 33225 br4 33226 xpord2lem 33329 xpord3lem 33335 poseq 33341 dfbigcup2 33735 brsegle 33944 heiborlem2 35515 |
Copyright terms: Public domain | W3C validator |