MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab Structured version   Visualization version   GIF version

Theorem brab 5562
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
Hypotheses
Ref Expression
opelopab.1 𝐴 ∈ V
opelopab.2 𝐵 ∈ V
opelopab.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopab.4 (𝑦 = 𝐵 → (𝜓𝜒))
brab.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brab (𝐴𝑅𝐵𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab
StepHypRef Expression
1 opelopab.1 . 2 𝐴 ∈ V
2 opelopab.2 . 2 𝐵 ∈ V
3 opelopab.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 opelopab.4 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
5 brab.5 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
63, 4, 5brabg 5558 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝜒))
71, 2, 6mp2an 691 1 (𝐴𝑅𝐵𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229
This theorem is referenced by:  opbrop  5797  f1oweALT  8013  frxp  8167  fnwelem  8172  xpord2lem  8183  xpord3lem  8190  poseq  8199  dftpos4  8286  dfac3  10190  axdc2lem  10517  brdom7disj  10600  brdom6disj  10601  ordpipq  11011  ltresr  11209  shftfn  15122  2shfti  15129  ishpg  28785  brcgr  28933  ex-opab  30464  br8d  32632  br8  35718  br6  35719  br4  35720  dfbigcup2  35863  brsegle  36072  heiborlem2  37772
  Copyright terms: Public domain W3C validator