| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brab | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
| Ref | Expression |
|---|---|
| opelopab.1 | ⊢ 𝐴 ∈ V |
| opelopab.2 | ⊢ 𝐵 ∈ V |
| opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| brab.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brab | ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 5 | brab.5 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 6 | 3, 4, 5 | brabg 5544 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 {copab 5205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 |
| This theorem is referenced by: opbrop 5783 f1oweALT 7997 frxp 8151 fnwelem 8156 xpord2lem 8167 xpord3lem 8174 poseq 8183 dftpos4 8270 dfac3 10161 axdc2lem 10488 brdom7disj 10571 brdom6disj 10572 ordpipq 10982 ltresr 11180 shftfn 15112 2shfti 15119 ishpg 28767 brcgr 28915 ex-opab 30451 br8d 32622 br8 35756 br6 35757 br4 35758 dfbigcup2 35900 brsegle 36109 heiborlem2 37819 |
| Copyright terms: Public domain | W3C validator |