| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brab | Structured version Visualization version GIF version | ||
| Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
| Ref | Expression |
|---|---|
| opelopab.1 | ⊢ 𝐴 ∈ V |
| opelopab.2 | ⊢ 𝐵 ∈ V |
| opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| brab.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| brab | ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 5 | brab.5 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 6 | 3, 4, 5 | brabg 5482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 {copab 5155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 |
| This theorem is referenced by: opbrop 5717 f1oweALT 7910 frxp 8062 fnwelem 8067 xpord2lem 8078 xpord3lem 8085 poseq 8094 dftpos4 8181 dfac3 10019 axdc2lem 10346 brdom7disj 10429 brdom6disj 10430 ordpipq 10840 ltresr 11038 shftfn 14982 2shfti 14989 ishpg 28738 brcgr 28880 ex-opab 30414 br8d 32593 fineqvnttrclselem3 35164 fineqvnttrclse 35165 vonf1owev 35173 br8 35821 br6 35822 br4 35823 dfbigcup2 35962 brsegle 36173 heiborlem2 37873 |
| Copyright terms: Public domain | W3C validator |