![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brab | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
Ref | Expression |
---|---|
opelopab.1 | ⊢ 𝐴 ∈ V |
opelopab.2 | ⊢ 𝐵 ∈ V |
opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brab.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brab | ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | brab.5 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
6 | 3, 4, 5 | brabg 5549 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
7 | 1, 2, 6 | mp2an 692 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 |
This theorem is referenced by: opbrop 5786 f1oweALT 7996 frxp 8150 fnwelem 8155 xpord2lem 8166 xpord3lem 8173 poseq 8182 dftpos4 8269 dfac3 10159 axdc2lem 10486 brdom7disj 10569 brdom6disj 10570 ordpipq 10980 ltresr 11178 shftfn 15109 2shfti 15116 ishpg 28782 brcgr 28930 ex-opab 30461 br8d 32630 br8 35736 br6 35737 br4 35738 dfbigcup2 35881 brsegle 36090 heiborlem2 37799 |
Copyright terms: Public domain | W3C validator |