Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon1b Structured version   Visualization version   GIF version

Theorem oplecon1b 39320
Description: Contraposition law for strict ordering in orthoposets. (chsscon1 31483 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐵 = (Base‘𝐾)
opcon3.l = (le‘𝐾)
opcon3.o = (oc‘𝐾)
Assertion
Ref Expression
oplecon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) 𝑋))

Proof of Theorem oplecon1b
StepHypRef Expression
1 opcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 39313 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
433adant3 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
5 opcon3.l . . . 4 = (le‘𝐾)
61, 5, 2oplecon3b 39319 . . 3 ((𝐾 ∈ OP ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) ( ‘( 𝑋))))
74, 6syld3an2 1413 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) ( ‘( 𝑋))))
81, 2opococ 39314 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
983adant3 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
109breq2d 5105 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( ‘( 𝑋)) ↔ ( 𝑌) 𝑋))
117, 10bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  Basecbs 17122  lecple 17170  occoc 17171  OPcops 39291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-dm 5629  df-iota 6442  df-fv 6494  df-ov 7355  df-oposet 39295
This theorem is referenced by:  opoc1  39321  oldmm1  39336
  Copyright terms: Public domain W3C validator