![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon1b | Structured version Visualization version GIF version |
Description: Contraposition law for strict ordering in orthoposets. (chsscon1 31530 analog.) (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opcon3.l | ⊢ ≤ = (le‘𝐾) |
opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
oplecon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcon3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opcon3.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
3 | 1, 2 | opoccl 39176 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
4 | 3 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
5 | opcon3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | 1, 5, 2 | oplecon3b 39182 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘( ⊥ ‘𝑋)))) |
7 | 4, 6 | syld3an2 1410 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘( ⊥ ‘𝑋)))) |
8 | 1, 2 | opococ 39177 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
9 | 8 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
10 | 9 | breq2d 5160 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘( ⊥ ‘𝑋)) ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) |
11 | 7, 10 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 lecple 17305 occoc 17306 OPcops 39154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 df-oposet 39158 |
This theorem is referenced by: opoc1 39184 oldmm1 39199 |
Copyright terms: Public domain | W3C validator |