Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oplecon1b Structured version   Visualization version   GIF version

Theorem oplecon1b 39157
Description: Contraposition law for strict ordering in orthoposets. (chsscon1 31533 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
opcon3.b 𝐵 = (Base‘𝐾)
opcon3.l = (le‘𝐾)
opcon3.o = (oc‘𝐾)
Assertion
Ref Expression
oplecon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) 𝑋))

Proof of Theorem oplecon1b
StepHypRef Expression
1 opcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 39150 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
433adant3 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
5 opcon3.l . . . 4 = (le‘𝐾)
61, 5, 2oplecon3b 39156 . . 3 ((𝐾 ∈ OP ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) ( ‘( 𝑋))))
74, 6syld3an2 1411 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) ( ‘( 𝑋))))
81, 2opococ 39151 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
983adant3 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
109breq2d 5178 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( ‘( 𝑋)) ↔ ( 𝑌) 𝑋))
117, 10bitrd 279 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌 ↔ ( 𝑌) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  occoc 17319  OPcops 39128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451  df-oposet 39132
This theorem is referenced by:  opoc1  39158  oldmm1  39173
  Copyright terms: Public domain W3C validator