| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oplecon1b | Structured version Visualization version GIF version | ||
| Description: Contraposition law for strict ordering in orthoposets. (chsscon1 31520 analog.) (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| opcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
| opcon3.l | ⊢ ≤ = (le‘𝐾) |
| opcon3.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| oplecon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcon3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | opcon3.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | 1, 2 | opoccl 39195 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 4 | 3 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 5 | opcon3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 6 | 1, 5, 2 | oplecon3b 39201 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘( ⊥ ‘𝑋)))) |
| 7 | 4, 6 | syld3an2 1413 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘( ⊥ ‘𝑋)))) |
| 8 | 1, 2 | opococ 39196 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 9 | 8 | 3adant3 1133 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
| 10 | 9 | breq2d 5155 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘( ⊥ ‘𝑋)) ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) |
| 11 | 7, 10 | bitrd 279 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 occoc 17305 OPcops 39173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-nul 5306 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 df-oposet 39177 |
| This theorem is referenced by: opoc1 39203 oldmm1 39218 |
| Copyright terms: Public domain | W3C validator |