| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version | ||
| Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.) |
| Ref | Expression |
|---|---|
| opoc1.z | ⊢ 0 = (0.‘𝐾) |
| opoc1.u | ⊢ 1 = (1.‘𝐾) |
| opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoc1 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | opoc1.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 3 | 1, 2 | op0cl 39150 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 4 | opoc1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
| 5 | 1, 4 | opoccl 39160 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
| 6 | 3, 5 | mpdan 687 | . . . 4 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
| 7 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | opoc1.u | . . . . 5 ⊢ 1 = (1.‘𝐾) | |
| 9 | 1, 7, 8 | ople1 39157 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
| 10 | 6, 9 | mpdan 687 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
| 11 | 1, 8 | op1cl 39151 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 12 | 1, 7, 4 | oplecon1b 39167 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
| 13 | 11, 3, 12 | mpd3an23 1465 | . . 3 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
| 14 | 10, 13 | mpbird 257 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 )(le‘𝐾) 0 ) |
| 15 | 1, 4 | opoccl 39160 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
| 16 | 11, 15 | mpdan 687 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
| 17 | 1, 7, 2 | ople0 39153 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
| 18 | 16, 17 | mpdan 687 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
| 19 | 14, 18 | mpbid 232 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 occoc 17204 0.cp0 18358 1.cp1 18359 OPcops 39138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-proset 18231 df-poset 18250 df-lub 18281 df-glb 18282 df-p0 18360 df-p1 18361 df-oposet 39142 |
| This theorem is referenced by: opoc0 39169 olm11 39193 1cvrco 39439 1cvrjat 39442 pol1N 39877 doch1 41326 |
| Copyright terms: Public domain | W3C validator |