| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version | ||
| Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.) |
| Ref | Expression |
|---|---|
| opoc1.z | ⊢ 0 = (0.‘𝐾) |
| opoc1.u | ⊢ 1 = (1.‘𝐾) |
| opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| opoc1 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | opoc1.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 3 | 1, 2 | op0cl 39126 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 4 | opoc1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
| 5 | 1, 4 | opoccl 39136 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
| 6 | 3, 5 | mpdan 687 | . . . 4 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
| 7 | eqid 2734 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 8 | opoc1.u | . . . . 5 ⊢ 1 = (1.‘𝐾) | |
| 9 | 1, 7, 8 | ople1 39133 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
| 10 | 6, 9 | mpdan 687 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
| 11 | 1, 8 | op1cl 39127 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 12 | 1, 7, 4 | oplecon1b 39143 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
| 13 | 11, 3, 12 | mpd3an23 1464 | . . 3 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
| 14 | 10, 13 | mpbird 257 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 )(le‘𝐾) 0 ) |
| 15 | 1, 4 | opoccl 39136 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
| 16 | 11, 15 | mpdan 687 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
| 17 | 1, 7, 2 | ople0 39129 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
| 18 | 16, 17 | mpdan 687 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
| 19 | 14, 18 | mpbid 232 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 Basecbs 17230 lecple 17284 occoc 17285 0.cp0 18442 1.cp1 18443 OPcops 39114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-proset 18315 df-poset 18334 df-lub 18365 df-glb 18366 df-p0 18444 df-p1 18445 df-oposet 39118 |
| This theorem is referenced by: opoc0 39145 olm11 39169 1cvrco 39415 1cvrjat 39418 pol1N 39853 doch1 41302 |
| Copyright terms: Public domain | W3C validator |