Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc1 Structured version   Visualization version   GIF version

Theorem opoc1 39184
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc1 (𝐾 ∈ OP → ( 1 ) = 0 )

Proof of Theorem opoc1
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 opoc1.z . . . . . 6 0 = (0.‘𝐾)
31, 2op0cl 39166 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
4 opoc1.o . . . . . 6 = (oc‘𝐾)
51, 4opoccl 39176 . . . . 5 ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( 0 ) ∈ (Base‘𝐾))
63, 5mpdan 687 . . . 4 (𝐾 ∈ OP → ( 0 ) ∈ (Base‘𝐾))
7 eqid 2735 . . . . 5 (le‘𝐾) = (le‘𝐾)
8 opoc1.u . . . . 5 1 = (1.‘𝐾)
91, 7, 8ople1 39173 . . . 4 ((𝐾 ∈ OP ∧ ( 0 ) ∈ (Base‘𝐾)) → ( 0 )(le‘𝐾) 1 )
106, 9mpdan 687 . . 3 (𝐾 ∈ OP → ( 0 )(le‘𝐾) 1 )
111, 8op1cl 39167 . . . 4 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
121, 7, 4oplecon1b 39183 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1311, 3, 12mpd3an23 1462 . . 3 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1410, 13mpbird 257 . 2 (𝐾 ∈ OP → ( 1 )(le‘𝐾) 0 )
151, 4opoccl 39176 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( 1 ) ∈ (Base‘𝐾))
1611, 15mpdan 687 . . 3 (𝐾 ∈ OP → ( 1 ) ∈ (Base‘𝐾))
171, 7, 2ople0 39169 . . 3 ((𝐾 ∈ OP ∧ ( 1 ) ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1816, 17mpdan 687 . 2 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1914, 18mpbid 232 1 (𝐾 ∈ OP → ( 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  occoc 17306  0.cp0 18481  1.cp1 18482  OPcops 39154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-p0 18483  df-p1 18484  df-oposet 39158
This theorem is referenced by:  opoc0  39185  olm11  39209  1cvrco  39455  1cvrjat  39458  pol1N  39893  doch1  41342
  Copyright terms: Public domain W3C validator