![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | β’ 0 = (0.βπΎ) |
opoc1.u | β’ 1 = (1.βπΎ) |
opoc1.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
opoc1 | β’ (πΎ β OP β ( β₯ β 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | opoc1.z | . . . . . 6 β’ 0 = (0.βπΎ) | |
3 | 1, 2 | op0cl 38049 | . . . . 5 β’ (πΎ β OP β 0 β (BaseβπΎ)) |
4 | opoc1.o | . . . . . 6 β’ β₯ = (ocβπΎ) | |
5 | 1, 4 | opoccl 38059 | . . . . 5 β’ ((πΎ β OP β§ 0 β (BaseβπΎ)) β ( β₯ β 0 ) β (BaseβπΎ)) |
6 | 3, 5 | mpdan 685 | . . . 4 β’ (πΎ β OP β ( β₯ β 0 ) β (BaseβπΎ)) |
7 | eqid 2732 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
8 | opoc1.u | . . . . 5 β’ 1 = (1.βπΎ) | |
9 | 1, 7, 8 | ople1 38056 | . . . 4 β’ ((πΎ β OP β§ ( β₯ β 0 ) β (BaseβπΎ)) β ( β₯ β 0 )(leβπΎ) 1 ) |
10 | 6, 9 | mpdan 685 | . . 3 β’ (πΎ β OP β ( β₯ β 0 )(leβπΎ) 1 ) |
11 | 1, 8 | op1cl 38050 | . . . 4 β’ (πΎ β OP β 1 β (BaseβπΎ)) |
12 | 1, 7, 4 | oplecon1b 38066 | . . . 4 β’ ((πΎ β OP β§ 1 β (BaseβπΎ) β§ 0 β (BaseβπΎ)) β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 0 )(leβπΎ) 1 )) |
13 | 11, 3, 12 | mpd3an23 1463 | . . 3 β’ (πΎ β OP β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 0 )(leβπΎ) 1 )) |
14 | 10, 13 | mpbird 256 | . 2 β’ (πΎ β OP β ( β₯ β 1 )(leβπΎ) 0 ) |
15 | 1, 4 | opoccl 38059 | . . . 4 β’ ((πΎ β OP β§ 1 β (BaseβπΎ)) β ( β₯ β 1 ) β (BaseβπΎ)) |
16 | 11, 15 | mpdan 685 | . . 3 β’ (πΎ β OP β ( β₯ β 1 ) β (BaseβπΎ)) |
17 | 1, 7, 2 | ople0 38052 | . . 3 β’ ((πΎ β OP β§ ( β₯ β 1 ) β (BaseβπΎ)) β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 1 ) = 0 )) |
18 | 16, 17 | mpdan 685 | . 2 β’ (πΎ β OP β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 1 ) = 0 )) |
19 | 14, 18 | mpbid 231 | 1 β’ (πΎ β OP β ( β₯ β 1 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 Basecbs 17143 lecple 17203 occoc 17204 0.cp0 18375 1.cp1 18376 OPcops 38037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-proset 18247 df-poset 18265 df-lub 18298 df-glb 18299 df-p0 18377 df-p1 18378 df-oposet 38041 |
This theorem is referenced by: opoc0 38068 olm11 38092 1cvrco 38338 1cvrjat 38341 pol1N 38776 doch1 40225 |
Copyright terms: Public domain | W3C validator |