![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | β’ 0 = (0.βπΎ) |
opoc1.u | β’ 1 = (1.βπΎ) |
opoc1.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
opoc1 | β’ (πΎ β OP β ( β₯ β 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | opoc1.z | . . . . . 6 β’ 0 = (0.βπΎ) | |
3 | 1, 2 | op0cl 38558 | . . . . 5 β’ (πΎ β OP β 0 β (BaseβπΎ)) |
4 | opoc1.o | . . . . . 6 β’ β₯ = (ocβπΎ) | |
5 | 1, 4 | opoccl 38568 | . . . . 5 β’ ((πΎ β OP β§ 0 β (BaseβπΎ)) β ( β₯ β 0 ) β (BaseβπΎ)) |
6 | 3, 5 | mpdan 684 | . . . 4 β’ (πΎ β OP β ( β₯ β 0 ) β (BaseβπΎ)) |
7 | eqid 2724 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
8 | opoc1.u | . . . . 5 β’ 1 = (1.βπΎ) | |
9 | 1, 7, 8 | ople1 38565 | . . . 4 β’ ((πΎ β OP β§ ( β₯ β 0 ) β (BaseβπΎ)) β ( β₯ β 0 )(leβπΎ) 1 ) |
10 | 6, 9 | mpdan 684 | . . 3 β’ (πΎ β OP β ( β₯ β 0 )(leβπΎ) 1 ) |
11 | 1, 8 | op1cl 38559 | . . . 4 β’ (πΎ β OP β 1 β (BaseβπΎ)) |
12 | 1, 7, 4 | oplecon1b 38575 | . . . 4 β’ ((πΎ β OP β§ 1 β (BaseβπΎ) β§ 0 β (BaseβπΎ)) β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 0 )(leβπΎ) 1 )) |
13 | 11, 3, 12 | mpd3an23 1459 | . . 3 β’ (πΎ β OP β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 0 )(leβπΎ) 1 )) |
14 | 10, 13 | mpbird 257 | . 2 β’ (πΎ β OP β ( β₯ β 1 )(leβπΎ) 0 ) |
15 | 1, 4 | opoccl 38568 | . . . 4 β’ ((πΎ β OP β§ 1 β (BaseβπΎ)) β ( β₯ β 1 ) β (BaseβπΎ)) |
16 | 11, 15 | mpdan 684 | . . 3 β’ (πΎ β OP β ( β₯ β 1 ) β (BaseβπΎ)) |
17 | 1, 7, 2 | ople0 38561 | . . 3 β’ ((πΎ β OP β§ ( β₯ β 1 ) β (BaseβπΎ)) β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 1 ) = 0 )) |
18 | 16, 17 | mpdan 684 | . 2 β’ (πΎ β OP β (( β₯ β 1 )(leβπΎ) 0 β ( β₯ β 1 ) = 0 )) |
19 | 14, 18 | mpbid 231 | 1 β’ (πΎ β OP β ( β₯ β 1 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 class class class wbr 5139 βcfv 6534 Basecbs 17149 lecple 17209 occoc 17210 0.cp0 18384 1.cp1 18385 OPcops 38546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-proset 18256 df-poset 18274 df-lub 18307 df-glb 18308 df-p0 18386 df-p1 18387 df-oposet 38550 |
This theorem is referenced by: opoc0 38577 olm11 38601 1cvrco 38847 1cvrjat 38850 pol1N 39285 doch1 40734 |
Copyright terms: Public domain | W3C validator |