Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc1 Structured version   Visualization version   GIF version

Theorem opoc1 38576
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.β€˜πΎ)
opoc1.u 1 = (1.β€˜πΎ)
opoc1.o βŠ₯ = (ocβ€˜πΎ)
Assertion
Ref Expression
opoc1 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 ) = 0 )

Proof of Theorem opoc1
StepHypRef Expression
1 eqid 2724 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 opoc1.z . . . . . 6 0 = (0.β€˜πΎ)
31, 2op0cl 38558 . . . . 5 (𝐾 ∈ OP β†’ 0 ∈ (Baseβ€˜πΎ))
4 opoc1.o . . . . . 6 βŠ₯ = (ocβ€˜πΎ)
51, 4opoccl 38568 . . . . 5 ((𝐾 ∈ OP ∧ 0 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜ 0 ) ∈ (Baseβ€˜πΎ))
63, 5mpdan 684 . . . 4 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 0 ) ∈ (Baseβ€˜πΎ))
7 eqid 2724 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
8 opoc1.u . . . . 5 1 = (1.β€˜πΎ)
91, 7, 8ople1 38565 . . . 4 ((𝐾 ∈ OP ∧ ( βŠ₯ β€˜ 0 ) ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 )
106, 9mpdan 684 . . 3 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 )
111, 8op1cl 38559 . . . 4 (𝐾 ∈ OP β†’ 1 ∈ (Baseβ€˜πΎ))
121, 7, 4oplecon1b 38575 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Baseβ€˜πΎ) ∧ 0 ∈ (Baseβ€˜πΎ)) β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 ))
1311, 3, 12mpd3an23 1459 . . 3 (𝐾 ∈ OP β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 ))
1410, 13mpbird 257 . 2 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 )
151, 4opoccl 38568 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜ 1 ) ∈ (Baseβ€˜πΎ))
1611, 15mpdan 684 . . 3 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 ) ∈ (Baseβ€˜πΎ))
171, 7, 2ople0 38561 . . 3 ((𝐾 ∈ OP ∧ ( βŠ₯ β€˜ 1 ) ∈ (Baseβ€˜πΎ)) β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 1 ) = 0 ))
1816, 17mpdan 684 . 2 (𝐾 ∈ OP β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 1 ) = 0 ))
1914, 18mpbid 231 1 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1533   ∈ wcel 2098   class class class wbr 5139  β€˜cfv 6534  Basecbs 17149  lecple 17209  occoc 17210  0.cp0 18384  1.cp1 18385  OPcops 38546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-proset 18256  df-poset 18274  df-lub 18307  df-glb 18308  df-p0 18386  df-p1 18387  df-oposet 38550
This theorem is referenced by:  opoc0  38577  olm11  38601  1cvrco  38847  1cvrjat  38850  pol1N  39285  doch1  40734
  Copyright terms: Public domain W3C validator