Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc1 Structured version   Visualization version   GIF version

Theorem opoc1 39158
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc1 (𝐾 ∈ OP → ( 1 ) = 0 )

Proof of Theorem opoc1
StepHypRef Expression
1 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 opoc1.z . . . . . 6 0 = (0.‘𝐾)
31, 2op0cl 39140 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
4 opoc1.o . . . . . 6 = (oc‘𝐾)
51, 4opoccl 39150 . . . . 5 ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( 0 ) ∈ (Base‘𝐾))
63, 5mpdan 686 . . . 4 (𝐾 ∈ OP → ( 0 ) ∈ (Base‘𝐾))
7 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
8 opoc1.u . . . . 5 1 = (1.‘𝐾)
91, 7, 8ople1 39147 . . . 4 ((𝐾 ∈ OP ∧ ( 0 ) ∈ (Base‘𝐾)) → ( 0 )(le‘𝐾) 1 )
106, 9mpdan 686 . . 3 (𝐾 ∈ OP → ( 0 )(le‘𝐾) 1 )
111, 8op1cl 39141 . . . 4 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
121, 7, 4oplecon1b 39157 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1311, 3, 12mpd3an23 1463 . . 3 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1410, 13mpbird 257 . 2 (𝐾 ∈ OP → ( 1 )(le‘𝐾) 0 )
151, 4opoccl 39150 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( 1 ) ∈ (Base‘𝐾))
1611, 15mpdan 686 . . 3 (𝐾 ∈ OP → ( 1 ) ∈ (Base‘𝐾))
171, 7, 2ople0 39143 . . 3 ((𝐾 ∈ OP ∧ ( 1 ) ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1816, 17mpdan 686 . 2 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1914, 18mpbid 232 1 (𝐾 ∈ OP → ( 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  occoc 17319  0.cp0 18493  1.cp1 18494  OPcops 39128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-proset 18365  df-poset 18383  df-lub 18416  df-glb 18417  df-p0 18495  df-p1 18496  df-oposet 39132
This theorem is referenced by:  opoc0  39159  olm11  39183  1cvrco  39429  1cvrjat  39432  pol1N  39867  doch1  41316
  Copyright terms: Public domain W3C validator