![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | ⊢ 0 = (0.‘𝐾) |
opoc1.u | ⊢ 1 = (1.‘𝐾) |
opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoc1 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | opoc1.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
3 | 1, 2 | op0cl 39140 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
4 | opoc1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 4 | opoccl 39150 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
6 | 3, 5 | mpdan 686 | . . . 4 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
7 | eqid 2740 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | opoc1.u | . . . . 5 ⊢ 1 = (1.‘𝐾) | |
9 | 1, 7, 8 | ople1 39147 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
10 | 6, 9 | mpdan 686 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
11 | 1, 8 | op1cl 39141 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
12 | 1, 7, 4 | oplecon1b 39157 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
13 | 11, 3, 12 | mpd3an23 1463 | . . 3 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
14 | 10, 13 | mpbird 257 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 )(le‘𝐾) 0 ) |
15 | 1, 4 | opoccl 39150 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
16 | 11, 15 | mpdan 686 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
17 | 1, 7, 2 | ople0 39143 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
18 | 16, 17 | mpdan 686 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
19 | 14, 18 | mpbid 232 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 occoc 17319 0.cp0 18493 1.cp1 18494 OPcops 39128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 df-p0 18495 df-p1 18496 df-oposet 39132 |
This theorem is referenced by: opoc0 39159 olm11 39183 1cvrco 39429 1cvrjat 39432 pol1N 39867 doch1 41316 |
Copyright terms: Public domain | W3C validator |