Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opoc1 | Structured version Visualization version GIF version |
Description: Orthocomplement of orthoposet unit. (Contributed by NM, 24-Jan-2012.) |
Ref | Expression |
---|---|
opoc1.z | ⊢ 0 = (0.‘𝐾) |
opoc1.u | ⊢ 1 = (1.‘𝐾) |
opoc1.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opoc1 | ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | opoc1.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
3 | 1, 2 | op0cl 37125 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
4 | opoc1.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
5 | 1, 4 | opoccl 37135 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
6 | 3, 5 | mpdan 683 | . . . 4 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) |
7 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | opoc1.u | . . . . 5 ⊢ 1 = (1.‘𝐾) | |
9 | 1, 7, 8 | ople1 37132 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 0 ) ∈ (Base‘𝐾)) → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
10 | 6, 9 | mpdan 683 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 0 )(le‘𝐾) 1 ) |
11 | 1, 8 | op1cl 37126 | . . . 4 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
12 | 1, 7, 4 | oplecon1b 37142 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
13 | 11, 3, 12 | mpd3an23 1461 | . . 3 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 0 )(le‘𝐾) 1 )) |
14 | 10, 13 | mpbird 256 | . 2 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 )(le‘𝐾) 0 ) |
15 | 1, 4 | opoccl 37135 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
16 | 11, 15 | mpdan 683 | . . 3 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) |
17 | 1, 7, 2 | ople0 37128 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘ 1 ) ∈ (Base‘𝐾)) → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
18 | 16, 17 | mpdan 683 | . 2 ⊢ (𝐾 ∈ OP → (( ⊥ ‘ 1 )(le‘𝐾) 0 ↔ ( ⊥ ‘ 1 ) = 0 )) |
19 | 14, 18 | mpbid 231 | 1 ⊢ (𝐾 ∈ OP → ( ⊥ ‘ 1 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 occoc 16896 0.cp0 18056 1.cp1 18057 OPcops 37113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-p0 18058 df-p1 18059 df-oposet 37117 |
This theorem is referenced by: opoc0 37144 olm11 37168 1cvrco 37413 1cvrjat 37416 pol1N 37851 doch1 39300 |
Copyright terms: Public domain | W3C validator |