Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc1 Structured version   Visualization version   GIF version

Theorem opoc1 37143
Description: Orthocomplement of orthoposet unit. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.‘𝐾)
opoc1.u 1 = (1.‘𝐾)
opoc1.o = (oc‘𝐾)
Assertion
Ref Expression
opoc1 (𝐾 ∈ OP → ( 1 ) = 0 )

Proof of Theorem opoc1
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 opoc1.z . . . . . 6 0 = (0.‘𝐾)
31, 2op0cl 37125 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
4 opoc1.o . . . . . 6 = (oc‘𝐾)
51, 4opoccl 37135 . . . . 5 ((𝐾 ∈ OP ∧ 0 ∈ (Base‘𝐾)) → ( 0 ) ∈ (Base‘𝐾))
63, 5mpdan 683 . . . 4 (𝐾 ∈ OP → ( 0 ) ∈ (Base‘𝐾))
7 eqid 2738 . . . . 5 (le‘𝐾) = (le‘𝐾)
8 opoc1.u . . . . 5 1 = (1.‘𝐾)
91, 7, 8ople1 37132 . . . 4 ((𝐾 ∈ OP ∧ ( 0 ) ∈ (Base‘𝐾)) → ( 0 )(le‘𝐾) 1 )
106, 9mpdan 683 . . 3 (𝐾 ∈ OP → ( 0 )(le‘𝐾) 1 )
111, 8op1cl 37126 . . . 4 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
121, 7, 4oplecon1b 37142 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾) ∧ 0 ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1311, 3, 12mpd3an23 1461 . . 3 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 0 )(le‘𝐾) 1 ))
1410, 13mpbird 256 . 2 (𝐾 ∈ OP → ( 1 )(le‘𝐾) 0 )
151, 4opoccl 37135 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Base‘𝐾)) → ( 1 ) ∈ (Base‘𝐾))
1611, 15mpdan 683 . . 3 (𝐾 ∈ OP → ( 1 ) ∈ (Base‘𝐾))
171, 7, 2ople0 37128 . . 3 ((𝐾 ∈ OP ∧ ( 1 ) ∈ (Base‘𝐾)) → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1816, 17mpdan 683 . 2 (𝐾 ∈ OP → (( 1 )(le‘𝐾) 0 ↔ ( 1 ) = 0 ))
1914, 18mpbid 231 1 (𝐾 ∈ OP → ( 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  occoc 16896  0.cp0 18056  1.cp1 18057  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-p0 18058  df-p1 18059  df-oposet 37117
This theorem is referenced by:  opoc0  37144  olm11  37168  1cvrco  37413  1cvrjat  37416  pol1N  37851  doch1  39300
  Copyright terms: Public domain W3C validator