Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc1 Structured version   Visualization version   GIF version

Theorem opoc1 38067
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z 0 = (0.β€˜πΎ)
opoc1.u 1 = (1.β€˜πΎ)
opoc1.o βŠ₯ = (ocβ€˜πΎ)
Assertion
Ref Expression
opoc1 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 ) = 0 )

Proof of Theorem opoc1
StepHypRef Expression
1 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 opoc1.z . . . . . 6 0 = (0.β€˜πΎ)
31, 2op0cl 38049 . . . . 5 (𝐾 ∈ OP β†’ 0 ∈ (Baseβ€˜πΎ))
4 opoc1.o . . . . . 6 βŠ₯ = (ocβ€˜πΎ)
51, 4opoccl 38059 . . . . 5 ((𝐾 ∈ OP ∧ 0 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜ 0 ) ∈ (Baseβ€˜πΎ))
63, 5mpdan 685 . . . 4 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 0 ) ∈ (Baseβ€˜πΎ))
7 eqid 2732 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
8 opoc1.u . . . . 5 1 = (1.β€˜πΎ)
91, 7, 8ople1 38056 . . . 4 ((𝐾 ∈ OP ∧ ( βŠ₯ β€˜ 0 ) ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 )
106, 9mpdan 685 . . 3 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 )
111, 8op1cl 38050 . . . 4 (𝐾 ∈ OP β†’ 1 ∈ (Baseβ€˜πΎ))
121, 7, 4oplecon1b 38066 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Baseβ€˜πΎ) ∧ 0 ∈ (Baseβ€˜πΎ)) β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 ))
1311, 3, 12mpd3an23 1463 . . 3 (𝐾 ∈ OP β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 0 )(leβ€˜πΎ) 1 ))
1410, 13mpbird 256 . 2 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 )
151, 4opoccl 38059 . . . 4 ((𝐾 ∈ OP ∧ 1 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜ 1 ) ∈ (Baseβ€˜πΎ))
1611, 15mpdan 685 . . 3 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 ) ∈ (Baseβ€˜πΎ))
171, 7, 2ople0 38052 . . 3 ((𝐾 ∈ OP ∧ ( βŠ₯ β€˜ 1 ) ∈ (Baseβ€˜πΎ)) β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 1 ) = 0 ))
1816, 17mpdan 685 . 2 (𝐾 ∈ OP β†’ (( βŠ₯ β€˜ 1 )(leβ€˜πΎ) 0 ↔ ( βŠ₯ β€˜ 1 ) = 0 ))
1914, 18mpbid 231 1 (𝐾 ∈ OP β†’ ( βŠ₯ β€˜ 1 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  Basecbs 17143  lecple 17203  occoc 17204  0.cp0 18375  1.cp1 18376  OPcops 38037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-proset 18247  df-poset 18265  df-lub 18298  df-glb 18299  df-p0 18377  df-p1 18378  df-oposet 38041
This theorem is referenced by:  opoc0  38068  olm11  38092  1cvrco  38338  1cvrjat  38341  pol1N  38776  doch1  40225
  Copyright terms: Public domain W3C validator