| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnzi | Structured version Visualization version GIF version | ||
| Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opnz 5428 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: opelopabsb 5485 0nelopab 5520 0nelxp 5665 unixp0 6244 funopsn 7102 cnfldfun 21254 cnfldfunOLD 21267 fmlaomn0 35350 finxpreclem2 37351 finxp0 37352 finxpreclem6 37357 |
| Copyright terms: Public domain | W3C validator |