MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnzi Structured version   Visualization version   GIF version

Theorem opnzi 5389
Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opnzi 𝐴, 𝐵⟩ ≠ ∅

Proof of Theorem opnzi
StepHypRef Expression
1 opth1.1 . 2 𝐴 ∈ V
2 opth1.2 . 2 𝐵 ∈ V
3 opnz 5388 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
41, 2, 3mpbir2an 708 1 𝐴, 𝐵⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wne 2943  Vcvv 3432  c0 4256  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  opelopabsb  5443  0nelopab  5480  0nelopabOLD  5481  0nelxp  5623  unixp0  6186  funopsn  7020  cnfldfun  20609  fmlaomn0  33352  finxpreclem2  35561  finxp0  35562  finxpreclem6  35567
  Copyright terms: Public domain W3C validator