![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnzi | Structured version Visualization version GIF version |
Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opnz 5070 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
4 | 1, 2, 3 | mpbir2an 690 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ∅c0 4063 〈cop 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 |
This theorem is referenced by: opelopabsb 5119 0nelxp 5283 unixp0 5812 funopsn 6559 0neqopab 6849 cnfldfunALT 19974 finxpreclem2 33563 finxp0 33564 finxpreclem6 33569 |
Copyright terms: Public domain | W3C validator |