| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnzi | Structured version Visualization version GIF version | ||
| Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opnzi | ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opnz 5448 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 〈𝐴, 𝐵〉 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: opelopabsb 5505 0nelopab 5542 0nelxp 5688 unixp0 6272 funopsn 7138 cnfldfun 21329 cnfldfunOLD 21342 fmlaomn0 35412 finxpreclem2 37408 finxp0 37409 finxpreclem6 37414 |
| Copyright terms: Public domain | W3C validator |