MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnzi Structured version   Visualization version   GIF version

Theorem opnzi 5434
Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opnzi 𝐴, 𝐵⟩ ≠ ∅

Proof of Theorem opnzi
StepHypRef Expression
1 opth1.1 . 2 𝐴 ∈ V
2 opth1.2 . 2 𝐵 ∈ V
3 opnz 5433 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
41, 2, 3mpbir2an 711 1 𝐴, 𝐵⟩ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2925  Vcvv 3447  c0 4296  cop 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596
This theorem is referenced by:  opelopabsb  5490  0nelopab  5527  0nelxp  5672  unixp0  6256  funopsn  7120  cnfldfun  21278  cnfldfunOLD  21291  fmlaomn0  35377  finxpreclem2  37378  finxp0  37379  finxpreclem6  37384
  Copyright terms: Public domain W3C validator