Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcllem Structured version   Visualization version   GIF version

Theorem oppfrcllem 49227
Description: Lemma for oppfrcl 49228. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
Assertion
Ref Expression
oppfrcllem (𝜑𝐺 ≠ ∅)

Proof of Theorem oppfrcllem
StepHypRef Expression
1 oppfrcl.1 . 2 (𝜑𝐺𝑅)
2 oppfrcl.2 . . 3 Rel 𝑅
3 0nelrel0 5674 . . 3 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
42, 3ax-mp 5 . 2 ¬ ∅ ∈ 𝑅
5 nelne2 3026 . 2 ((𝐺𝑅 ∧ ¬ ∅ ∈ 𝑅) → 𝐺 ≠ ∅)
61, 4, 5sylancl 586 1 (𝜑𝐺 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  wne 2928  c0 4280  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by:  oppfrcl  49228  oppfrcl3  49230  lmdran  49771  cmdlan  49772
  Copyright terms: Public domain W3C validator