| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfrcllem | Structured version Visualization version GIF version | ||
| Description: Lemma for oppfrcl 49121. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| oppfrcllem | ⊢ (𝜑 → 𝐺 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 2 | oppfrcl.2 | . . 3 ⊢ Rel 𝑅 | |
| 3 | 0nelrel0 5701 | . . 3 ⊢ (Rel 𝑅 → ¬ ∅ ∈ 𝑅) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ¬ ∅ ∈ 𝑅 |
| 5 | nelne2 3024 | . 2 ⊢ ((𝐺 ∈ 𝑅 ∧ ¬ ∅ ∈ 𝑅) → 𝐺 ≠ ∅) | |
| 6 | 1, 4, 5 | sylancl 586 | 1 ⊢ (𝜑 → 𝐺 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: oppfrcl 49121 oppfrcl3 49123 lmdran 49664 cmdlan 49665 |
| Copyright terms: Public domain | W3C validator |