Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcllem Structured version   Visualization version   GIF version

Theorem oppfrcllem 49120
Description: Lemma for oppfrcl 49121. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
Assertion
Ref Expression
oppfrcllem (𝜑𝐺 ≠ ∅)

Proof of Theorem oppfrcllem
StepHypRef Expression
1 oppfrcl.1 . 2 (𝜑𝐺𝑅)
2 oppfrcl.2 . . 3 Rel 𝑅
3 0nelrel0 5701 . . 3 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
42, 3ax-mp 5 . 2 ¬ ∅ ∈ 𝑅
5 nelne2 3024 . 2 ((𝐺𝑅 ∧ ¬ ∅ ∈ 𝑅) → 𝐺 ≠ ∅)
61, 4, 5sylancl 586 1 (𝜑𝐺 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wne 2926  c0 4299  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  oppfrcl  49121  oppfrcl3  49123  lmdran  49664  cmdlan  49665
  Copyright terms: Public domain W3C validator