Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcllem Structured version   Visualization version   GIF version

Theorem oppfrcllem 49122
Description: Lemma for oppfrcl 49123. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
Assertion
Ref Expression
oppfrcllem (𝜑𝐺 ≠ ∅)

Proof of Theorem oppfrcllem
StepHypRef Expression
1 oppfrcl.1 . 2 (𝜑𝐺𝑅)
2 oppfrcl.2 . . 3 Rel 𝑅
3 0nelrel0 5679 . . 3 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
42, 3ax-mp 5 . 2 ¬ ∅ ∈ 𝑅
5 nelne2 3023 . 2 ((𝐺𝑅 ∧ ¬ ∅ ∈ 𝑅) → 𝐺 ≠ ∅)
61, 4, 5sylancl 586 1 (𝜑𝐺 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wne 2925  c0 4284  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-xp 5625  df-rel 5626
This theorem is referenced by:  oppfrcl  49123  oppfrcl3  49125  lmdran  49666  cmdlan  49667
  Copyright terms: Public domain W3C validator