Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcllem Structured version   Visualization version   GIF version

Theorem oppfrcllem 49023
Description: Lemma for oppfrcl 49024. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
Assertion
Ref Expression
oppfrcllem (𝜑𝐺 ≠ ∅)

Proof of Theorem oppfrcllem
StepHypRef Expression
1 oppfrcl.1 . 2 (𝜑𝐺𝑅)
2 oppfrcl.2 . . 3 Rel 𝑅
3 0nelrel0 5714 . . 3 (Rel 𝑅 → ¬ ∅ ∈ 𝑅)
42, 3ax-mp 5 . 2 ¬ ∅ ∈ 𝑅
5 nelne2 3030 . 2 ((𝐺𝑅 ∧ ¬ ∅ ∈ 𝑅) → 𝐺 ≠ ∅)
61, 4, 5sylancl 586 1 (𝜑𝐺 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wne 2932  c0 4308  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-opab 5182  df-xp 5660  df-rel 5661
This theorem is referenced by:  oppfrcl  49024  oppfrcl3  49026
  Copyright terms: Public domain W3C validator