Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl3 Structured version   Visualization version   GIF version

Theorem oppfrcl3 49125
Description: If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppfrcl3 (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵))

Proof of Theorem oppfrcl3
StepHypRef Expression
1 oppfrcl2.4 . . . . . 6 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
21fveq2d 6826 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨𝐴, 𝐵⟩))
3 oppfrcl.3 . . . . 5 𝐺 = ( oppFunc ‘𝐹)
4 df-ov 7352 . . . . 5 (𝐴 oppFunc 𝐵) = ( oppFunc ‘⟨𝐴, 𝐵⟩)
52, 3, 43eqtr4g 2789 . . . 4 (𝜑𝐺 = (𝐴 oppFunc 𝐵))
6 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
7 oppfrcl.2 . . . . . 6 Rel 𝑅
86, 7, 3, 1oppfrcl2 49124 . . . . 5 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 oppfvalg 49121 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
108, 9syl 17 . . . 4 (𝜑 → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
115, 10eqtrd 2764 . . 3 (𝜑𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
126, 7oppfrcllem 49122 . . 3 (𝜑𝐺 ≠ ∅)
1311, 12eqnetrrd 2993 . 2 (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) ≠ ∅)
14 iffalse 4485 . . 3 (¬ (Rel 𝐵 ∧ Rel dom 𝐵) → if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) = ∅)
1514necon1ai 2952 . 2 (if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) ≠ ∅ → (Rel 𝐵 ∧ Rel dom 𝐵))
1613, 15syl 17 1 (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  c0 4284  ifcif 4476  cop 4583  dom cdm 5619  Rel wrel 5624  cfv 6482  (class class class)co 7349  tpos ctpos 8158   oppFunc coppf 49117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-tpos 8159  df-oppf 49118
This theorem is referenced by:  oppf1st2nd  49126  2oppf  49127  funcoppc4  49139
  Copyright terms: Public domain W3C validator