Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl3 Structured version   Visualization version   GIF version

Theorem oppfrcl3 49123
Description: If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = ( oppFunc ‘𝐹)
oppfrcl2.4 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
oppfrcl3 (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵))

Proof of Theorem oppfrcl3
StepHypRef Expression
1 oppfrcl2.4 . . . . . 6 (𝜑𝐹 = ⟨𝐴, 𝐵⟩)
21fveq2d 6865 . . . . 5 (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘⟨𝐴, 𝐵⟩))
3 oppfrcl.3 . . . . 5 𝐺 = ( oppFunc ‘𝐹)
4 df-ov 7393 . . . . 5 (𝐴 oppFunc 𝐵) = ( oppFunc ‘⟨𝐴, 𝐵⟩)
52, 3, 43eqtr4g 2790 . . . 4 (𝜑𝐺 = (𝐴 oppFunc 𝐵))
6 oppfrcl.1 . . . . . 6 (𝜑𝐺𝑅)
7 oppfrcl.2 . . . . . 6 Rel 𝑅
86, 7, 3, 1oppfrcl2 49122 . . . . 5 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
9 oppfvalg 49119 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
108, 9syl 17 . . . 4 (𝜑 → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
115, 10eqtrd 2765 . . 3 (𝜑𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅))
126, 7oppfrcllem 49120 . . 3 (𝜑𝐺 ≠ ∅)
1311, 12eqnetrrd 2994 . 2 (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) ≠ ∅)
14 iffalse 4500 . . 3 (¬ (Rel 𝐵 ∧ Rel dom 𝐵) → if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) = ∅)
1514necon1ai 2953 . 2 (if((Rel 𝐵 ∧ Rel dom 𝐵), ⟨𝐴, tpos 𝐵⟩, ∅) ≠ ∅ → (Rel 𝐵 ∧ Rel dom 𝐵))
1613, 15syl 17 1 (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  ifcif 4491  cop 4598  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  tpos ctpos 8207   oppFunc coppf 49115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-tpos 8208  df-oppf 49116
This theorem is referenced by:  oppf1st2nd  49124  2oppf  49125  funcoppc4  49137
  Copyright terms: Public domain W3C validator