| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfrcl3 | Structured version Visualization version GIF version | ||
| Description: If an opposite functor of a class is a functor, then the second component of the original class must be a relation whose domain is a relation as well. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘𝐹) |
| oppfrcl2.4 | ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| oppfrcl3 | ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl2.4 | . . . . . 6 ⊢ (𝜑 → 𝐹 = 〈𝐴, 𝐵〉) | |
| 2 | 1 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → ( oppFunc ‘𝐹) = ( oppFunc ‘〈𝐴, 𝐵〉)) |
| 3 | oppfrcl.3 | . . . . 5 ⊢ 𝐺 = ( oppFunc ‘𝐹) | |
| 4 | df-ov 7349 | . . . . 5 ⊢ (𝐴 oppFunc 𝐵) = ( oppFunc ‘〈𝐴, 𝐵〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝐴 oppFunc 𝐵)) |
| 6 | oppfrcl.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 7 | oppfrcl.2 | . . . . . 6 ⊢ Rel 𝑅 | |
| 8 | 6, 7, 3, 1 | oppfrcl2 49229 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 9 | oppfvalg 49226 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 oppFunc 𝐵) = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 11 | 5, 10 | eqtrd 2766 | . . 3 ⊢ (𝜑 → 𝐺 = if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅)) |
| 12 | 6, 7 | oppfrcllem 49227 | . . 3 ⊢ (𝜑 → 𝐺 ≠ ∅) |
| 13 | 11, 12 | eqnetrrd 2996 | . 2 ⊢ (𝜑 → if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅) ≠ ∅) |
| 14 | iffalse 4481 | . . 3 ⊢ (¬ (Rel 𝐵 ∧ Rel dom 𝐵) → if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅) = ∅) | |
| 15 | 14 | necon1ai 2955 | . 2 ⊢ (if((Rel 𝐵 ∧ Rel dom 𝐵), 〈𝐴, tpos 𝐵〉, ∅) ≠ ∅ → (Rel 𝐵 ∧ Rel dom 𝐵)) |
| 16 | 13, 15 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐵 ∧ Rel dom 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 ifcif 4472 〈cop 4579 dom cdm 5614 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 oppFunc coppf 49222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-tpos 8156 df-oppf 49223 |
| This theorem is referenced by: oppf1st2nd 49231 2oppf 49232 funcoppc4 49244 |
| Copyright terms: Public domain | W3C validator |