Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppfrcl Structured version   Visualization version   GIF version

Theorem oppfrcl 49024
Description: If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
oppfrcl.1 (𝜑𝐺𝑅)
oppfrcl.2 Rel 𝑅
oppfrcl.3 𝐺 = (oppFunc‘𝐹)
Assertion
Ref Expression
oppfrcl (𝜑𝐹 ∈ (V × V))

Proof of Theorem oppfrcl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppfrcl.1 . . . 4 (𝜑𝐺𝑅)
2 oppfrcl.2 . . . 4 Rel 𝑅
31, 2oppfrcllem 49023 . . 3 (𝜑𝐺 ≠ ∅)
4 oppfrcl.3 . . . . 5 𝐺 = (oppFunc‘𝐹)
5 ndmfv 6910 . . . . 5 𝐹 ∈ dom oppFunc → (oppFunc‘𝐹) = ∅)
64, 5eqtrid 2782 . . . 4 𝐹 ∈ dom oppFunc → 𝐺 = ∅)
76necon1ai 2959 . . 3 (𝐺 ≠ ∅ → 𝐹 ∈ dom oppFunc)
83, 7syl 17 . 2 (𝜑𝐹 ∈ dom oppFunc)
9 df-oppf 49020 . . 3 oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅))
10 opex 5439 . . . 4 𝑓, tpos 𝑔⟩ ∈ V
11 0ex 5277 . . . 4 ∅ ∈ V
1210, 11ifex 4551 . . 3 if((Rel 𝑔 ∧ Rel dom 𝑔), ⟨𝑓, tpos 𝑔⟩, ∅) ∈ V
139, 12dmmpo 8068 . 2 dom oppFunc = (V × V)
148, 13eleqtrdi 2844 1 (𝜑𝐹 ∈ (V × V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  ifcif 4500  cop 4607   × cxp 5652  dom cdm 5654  Rel wrel 5659  cfv 6530  tpos ctpos 8222  oppFunccoppf 49019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-oppf 49020
This theorem is referenced by:  oppfrcl2  49025  2oppf  49028  funcoppc5  49036
  Copyright terms: Public domain W3C validator