| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfrcl | Structured version Visualization version GIF version | ||
| Description: If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = ( oppFunc ‘𝐹) |
| Ref | Expression |
|---|---|
| oppfrcl | ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 2 | oppfrcl.2 | . . . 4 ⊢ Rel 𝑅 | |
| 3 | 1, 2 | oppfrcllem 49122 | . . 3 ⊢ (𝜑 → 𝐺 ≠ ∅) |
| 4 | oppfrcl.3 | . . . . 5 ⊢ 𝐺 = ( oppFunc ‘𝐹) | |
| 5 | ndmfv 6855 | . . . . 5 ⊢ (¬ 𝐹 ∈ dom oppFunc → ( oppFunc ‘𝐹) = ∅) | |
| 6 | 4, 5 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝐹 ∈ dom oppFunc → 𝐺 = ∅) |
| 7 | 6 | necon1ai 2952 | . . 3 ⊢ (𝐺 ≠ ∅ → 𝐹 ∈ dom oppFunc ) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom oppFunc ) |
| 9 | oppffn 49119 | . . 3 ⊢ oppFunc Fn (V × V) | |
| 10 | 9 | fndmi 6586 | . 2 ⊢ dom oppFunc = (V × V) |
| 11 | 8, 10 | eleqtrdi 2838 | 1 ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 × cxp 5617 dom cdm 5619 Rel wrel 5624 ‘cfv 6482 oppFunc coppf 49117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-oppf 49118 |
| This theorem is referenced by: oppfrcl2 49124 2oppf 49127 funcoppc5 49140 |
| Copyright terms: Public domain | W3C validator |