| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppfrcl | Structured version Visualization version GIF version | ||
| Description: If an opposite functor of a class is a functor, then the original class must be an ordered pair. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppfrcl.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑅) |
| oppfrcl.2 | ⊢ Rel 𝑅 |
| oppfrcl.3 | ⊢ 𝐺 = (oppFunc‘𝐹) |
| Ref | Expression |
|---|---|
| oppfrcl | ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfrcl.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑅) | |
| 2 | oppfrcl.2 | . . . 4 ⊢ Rel 𝑅 | |
| 3 | 1, 2 | oppfrcllem 49023 | . . 3 ⊢ (𝜑 → 𝐺 ≠ ∅) |
| 4 | oppfrcl.3 | . . . . 5 ⊢ 𝐺 = (oppFunc‘𝐹) | |
| 5 | ndmfv 6910 | . . . . 5 ⊢ (¬ 𝐹 ∈ dom oppFunc → (oppFunc‘𝐹) = ∅) | |
| 6 | 4, 5 | eqtrid 2782 | . . . 4 ⊢ (¬ 𝐹 ∈ dom oppFunc → 𝐺 = ∅) |
| 7 | 6 | necon1ai 2959 | . . 3 ⊢ (𝐺 ≠ ∅ → 𝐹 ∈ dom oppFunc) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom oppFunc) |
| 9 | df-oppf 49020 | . . 3 ⊢ oppFunc = (𝑓 ∈ V, 𝑔 ∈ V ↦ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅)) | |
| 10 | opex 5439 | . . . 4 ⊢ 〈𝑓, tpos 𝑔〉 ∈ V | |
| 11 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 12 | 10, 11 | ifex 4551 | . . 3 ⊢ if((Rel 𝑔 ∧ Rel dom 𝑔), 〈𝑓, tpos 𝑔〉, ∅) ∈ V |
| 13 | 9, 12 | dmmpo 8068 | . 2 ⊢ dom oppFunc = (V × V) |
| 14 | 8, 13 | eleqtrdi 2844 | 1 ⊢ (𝜑 → 𝐹 ∈ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 ifcif 4500 〈cop 4607 × cxp 5652 dom cdm 5654 Rel wrel 5659 ‘cfv 6530 tpos ctpos 8222 oppFunccoppf 49019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-oppf 49020 |
| This theorem is referenced by: oppfrcl2 49025 2oppf 49028 funcoppc5 49036 |
| Copyright terms: Public domain | W3C validator |