MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opres Structured version   Visualization version   GIF version

Theorem opres 5940
Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
opres.1 𝐵 ∈ V
Assertion
Ref Expression
opres (𝐴𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))

Proof of Theorem opres
StepHypRef Expression
1 opres.1 . . 3 𝐵 ∈ V
21opelresi 5938 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (𝐴𝐷 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
32baib 535 1 (𝐴𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3436  cop 4583  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-xp 5625  df-res 5631
This theorem is referenced by:  resieq  5941  2elresin  6603  mdetunilem9  22505
  Copyright terms: Public domain W3C validator