![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opres | Structured version Visualization version GIF version |
Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
opres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opres | ⊢ (𝐴 ∈ 𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opres.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | opelresi 5989 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ (𝐴 ∈ 𝐷 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶)) |
3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐷 → (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 Vcvv 3473 ⟨cop 4634 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 df-res 5688 |
This theorem is referenced by: resieq 5992 2elresin 6671 mdetunilem9 22442 |
Copyright terms: Public domain | W3C validator |