MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resieq Structured version   Visualization version   GIF version

Theorem resieq 5847
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
resieq ((𝐵𝐴𝐶𝐴) → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))

Proof of Theorem resieq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5043 . . . . 5 (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥𝐵( I ↾ 𝐴)𝐶))
2 eqeq2 2748 . . . . 5 (𝑥 = 𝐶 → (𝐵 = 𝑥𝐵 = 𝐶))
31, 2bibi12d 349 . . . 4 (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶)))
43imbi2d 344 . . 3 (𝑥 = 𝐶 → ((𝐵𝐴 → (𝐵( I ↾ 𝐴)𝑥𝐵 = 𝑥)) ↔ (𝐵𝐴 → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))))
5 vex 3402 . . . . 5 𝑥 ∈ V
65opres 5846 . . . 4 (𝐵𝐴 → (⟨𝐵, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ ⟨𝐵, 𝑥⟩ ∈ I ))
7 df-br 5040 . . . 4 (𝐵( I ↾ 𝐴)𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ ( I ↾ 𝐴))
85ideq 5706 . . . . 5 (𝐵 I 𝑥𝐵 = 𝑥)
9 df-br 5040 . . . . 5 (𝐵 I 𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ I )
108, 9bitr3i 280 . . . 4 (𝐵 = 𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ I )
116, 7, 103bitr4g 317 . . 3 (𝐵𝐴 → (𝐵( I ↾ 𝐴)𝑥𝐵 = 𝑥))
124, 11vtoclg 3471 . 2 (𝐶𝐴 → (𝐵𝐴 → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶)))
1312impcom 411 1 ((𝐵𝐴𝐶𝐴) → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  cop 4533   class class class wbr 5039   I cid 5439  cres 5538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-res 5548
This theorem is referenced by:  foeqcnvco  7088  f1eqcocnv  7089  f1eqcocnvOLD  7090  dfle2  12702  pospo  17805  dirref  18061  ustref  23070  trust  23081  brfvrcld2  40918
  Copyright terms: Public domain W3C validator