MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resieq Structured version   Visualization version   GIF version

Theorem resieq 5864
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
resieq ((𝐵𝐴𝐶𝐴) → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))

Proof of Theorem resieq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5070 . . . . 5 (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥𝐵( I ↾ 𝐴)𝐶))
2 eqeq2 2833 . . . . 5 (𝑥 = 𝐶 → (𝐵 = 𝑥𝐵 = 𝐶))
31, 2bibi12d 348 . . . 4 (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶)))
43imbi2d 343 . . 3 (𝑥 = 𝐶 → ((𝐵𝐴 → (𝐵( I ↾ 𝐴)𝑥𝐵 = 𝑥)) ↔ (𝐵𝐴 → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))))
5 vex 3497 . . . . 5 𝑥 ∈ V
65opres 5863 . . . 4 (𝐵𝐴 → (⟨𝐵, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ ⟨𝐵, 𝑥⟩ ∈ I ))
7 df-br 5067 . . . 4 (𝐵( I ↾ 𝐴)𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ ( I ↾ 𝐴))
85ideq 5723 . . . . 5 (𝐵 I 𝑥𝐵 = 𝑥)
9 df-br 5067 . . . . 5 (𝐵 I 𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ I )
108, 9bitr3i 279 . . . 4 (𝐵 = 𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ I )
116, 7, 103bitr4g 316 . . 3 (𝐵𝐴 → (𝐵( I ↾ 𝐴)𝑥𝐵 = 𝑥))
124, 11vtoclg 3567 . 2 (𝐶𝐴 → (𝐵𝐴 → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶)))
1312impcom 410 1 ((𝐵𝐴𝐶𝐴) → (𝐵( I ↾ 𝐴)𝐶𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cop 4573   class class class wbr 5066   I cid 5459  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-res 5567
This theorem is referenced by:  foeqcnvco  7056  f1eqcocnv  7057  dfle2  12541  pospo  17583  dirref  17845  ustref  22827  trust  22838  brfvrcld2  40057
  Copyright terms: Public domain W3C validator