![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resieq | Structured version Visualization version GIF version |
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
resieq | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵( I ↾ 𝐴)𝐶)) | |
2 | eqeq2 2743 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)))) |
5 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | opres 5991 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (⟨𝐵, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ ⟨𝐵, 𝑥⟩ ∈ I )) |
7 | df-br 5149 | . . . 4 ⊢ (𝐵( I ↾ 𝐴)𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ ( I ↾ 𝐴)) | |
8 | 5 | ideq 5852 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 𝐵 = 𝑥) |
9 | df-br 5149 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ I ) | |
10 | 8, 9 | bitr3i 277 | . . . 4 ⊢ (𝐵 = 𝑥 ↔ ⟨𝐵, 𝑥⟩ ∈ I ) |
11 | 6, 7, 10 | 3bitr4g 314 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) |
12 | 4, 11 | vtoclg 3542 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
13 | 12 | impcom 407 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 class class class wbr 5148 I cid 5573 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-res 5688 |
This theorem is referenced by: foeqcnvco 7301 f1eqcocnv 7302 f1eqcocnvOLD 7303 dfle2 13133 pospo 18308 dirref 18564 ustref 24043 trust 24054 brfvrcld2 42906 |
Copyright terms: Public domain | W3C validator |