![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resieq | Structured version Visualization version GIF version |
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
resieq | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵( I ↾ 𝐴)𝐶)) | |
2 | eqeq2 2752 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)))) |
5 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | opres 6019 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 〈𝐵, 𝑥〉 ∈ I )) |
7 | df-br 5167 | . . . 4 ⊢ (𝐵( I ↾ 𝐴)𝑥 ↔ 〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴)) | |
8 | 5 | ideq 5877 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 𝐵 = 𝑥) |
9 | df-br 5167 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) | |
10 | 8, 9 | bitr3i 277 | . . . 4 ⊢ (𝐵 = 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) |
11 | 6, 7, 10 | 3bitr4g 314 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) |
12 | 4, 11 | vtoclg 3566 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
13 | 12 | impcom 407 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 I cid 5592 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: foeqcnvco 7336 f1eqcocnv 7337 dfle2 13209 pospo 18415 dirref 18671 ustref 24248 trust 24259 brfvrcld2 43654 |
Copyright terms: Public domain | W3C validator |