Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resieq | Structured version Visualization version GIF version |
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
resieq | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵( I ↾ 𝐴)𝐶)) | |
2 | eqeq2 2750 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)))) |
5 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | opres 5890 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 〈𝐵, 𝑥〉 ∈ I )) |
7 | df-br 5071 | . . . 4 ⊢ (𝐵( I ↾ 𝐴)𝑥 ↔ 〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴)) | |
8 | 5 | ideq 5750 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 𝐵 = 𝑥) |
9 | df-br 5071 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) | |
10 | 8, 9 | bitr3i 276 | . . . 4 ⊢ (𝐵 = 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) |
11 | 6, 7, 10 | 3bitr4g 313 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) |
12 | 4, 11 | vtoclg 3495 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
13 | 12 | impcom 407 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 I cid 5479 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: foeqcnvco 7152 f1eqcocnv 7153 f1eqcocnvOLD 7154 dfle2 12810 pospo 17978 dirref 18234 ustref 23278 trust 23289 brfvrcld2 41189 |
Copyright terms: Public domain | W3C validator |