MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2elresin Structured version   Visualization version   GIF version

Theorem 2elresin 6689
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 6677 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
2 fnop 6677 . . . . . . . 8 ((𝐺 Fn 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑥𝐵)
31, 2anim12i 613 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺 Fn 𝐵 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (𝑥𝐴𝑥𝐵))
43an4s 660 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (𝑥𝐴𝑥𝐵))
5 elin 3967 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
64, 5sylibr 234 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑥 ∈ (𝐴𝐵))
7 vex 3484 . . . . . . . 8 𝑦 ∈ V
87opres 6007 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
9 vex 3484 . . . . . . . 8 𝑧 ∈ V
109opres 6007 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) → (⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)) ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
118, 10anbi12d 632 . . . . . 6 (𝑥 ∈ (𝐴𝐵) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
1211biimprd 248 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
136, 12syl 17 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
1413ex 412 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))))))
1514pm2.43d 53 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
16 resss 6019 . . . 4 (𝐹 ↾ (𝐴𝐵)) ⊆ 𝐹
1716sseli 3979 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) → ⟨𝑥, 𝑦⟩ ∈ 𝐹)
18 resss 6019 . . . 4 (𝐺 ↾ (𝐴𝐵)) ⊆ 𝐺
1918sseli 3979 . . 3 (⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)) → ⟨𝑥, 𝑧⟩ ∈ 𝐺)
2017, 19anim12i 613 . 2 ((⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵))) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
2115, 20impbid1 225 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  cin 3950  cop 4632  cres 5687   Fn wfn 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-dm 5695  df-res 5697  df-fun 6563  df-fn 6564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator