![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelresi | Structured version Visualization version GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
opelresi.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
opelresi | ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | opelres 5605 | . 2 ⊢ (𝐶 ∈ V → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∈ wcel 2157 Vcvv 3384 〈cop 4373 ↾ cres 5313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pr 5096 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-sn 4368 df-pr 4370 df-op 4374 df-opab 4905 df-xp 5317 df-res 5323 |
This theorem is referenced by: opres 5616 dmres 5628 relssres 5647 iss 5658 restidsing 5676 asymref 5729 ssrnres 5788 cnvresima 5841 ressn 5889 funssres 6143 fcnvres 6296 fvn0ssdmfun 6575 relexpindlem 14141 dprd2dlem1 18753 dprd2da 18754 hausdiag 21774 hauseqlcld 21775 ovoliunlem1 23607 undmrnresiss 38682 |
Copyright terms: Public domain | W3C validator |