MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelresi Structured version   Visualization version   GIF version

Theorem opelresi 5989
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelresi.1 𝐶 ∈ V
Assertion
Ref Expression
opelresi (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))

Proof of Theorem opelresi
StepHypRef Expression
1 opelresi.1 . 2 𝐶 ∈ V
2 opelres 5987 . 2 (𝐶 ∈ V → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
31, 2ax-mp 5 1 (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2105  Vcvv 3473  cop 4634  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-opab 5211  df-xp 5682  df-res 5688
This theorem is referenced by:  opres  5991  dmres  6003  relssres  6022  iss  6035  restidsing  6052  asymref  6117  ssrnres  6177  cnvresima  6229  ressn  6284  funssres  6592  fcnvres  6768  fvn0ssdmfun  7076  relexpindlem  15015  dprd2dlem1  19953  dprd2da  19954  hausdiag  23370  hauseqlcld  23371  ovoliunlem1  25252  undmrnresiss  42658
  Copyright terms: Public domain W3C validator