| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelresi | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| opelresi | ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | opelres 5959 | . 2 ⊢ (𝐶 ∈ V → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: opres 5963 dmres 5986 relssres 5996 iss 6009 restidsing 6027 asymref 6092 ssrnres 6154 cnvresima 6206 ressn 6261 funssres 6563 fcnvres 6740 fvn0ssdmfun 7049 relexpindlem 15036 dprd2dlem1 19980 dprd2da 19981 hausdiag 23539 hauseqlcld 23540 ovoliunlem1 25410 undmrnresiss 43600 |
| Copyright terms: Public domain | W3C validator |