| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | brres 5960 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: dfres2 6015 poirr2 6100 cores 6225 resco 6226 rnco 6228 dfpo2 6272 fnres 6648 fvres 6880 nfunsn 6903 eqfunresadj 7338 1stconst 8082 2ndconst 8083 fsplit 8099 fprlem1 8282 ttrclresv 9677 ttrclselem2 9686 frrlem15 9717 dprd2da 19981 metustid 24449 dvres 25819 dvres2 25820 ltgov 28531 hlimadd 31129 hhcmpl 31136 hhcms 31139 hlim0 31171 dfdm5 35767 dfrn5 35768 txpss3v 35873 brtxp 35875 pprodss4v 35879 brpprod 35880 brimg 35932 brapply 35933 funpartfun 35938 dfrdg4 35946 xrnss3v 38361 funressnfv 47048 funressnvmo 47050 afv2res 47244 tposres0 48869 setrec2lem2 49687 |
| Copyright terms: Public domain | W3C validator |