| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | brres 5957 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: dfres2 6012 poirr2 6097 cores 6222 resco 6223 rnco 6225 dfpo2 6269 fnres 6645 fvres 6877 nfunsn 6900 eqfunresadj 7335 1stconst 8079 2ndconst 8080 fsplit 8096 fprlem1 8279 ttrclresv 9670 ttrclselem2 9679 frrlem15 9710 dprd2da 19974 metustid 24442 dvres 25812 dvres2 25813 ltgov 28524 hlimadd 31122 hhcmpl 31129 hhcms 31132 hlim0 31164 dfdm5 35760 dfrn5 35761 txpss3v 35866 brtxp 35868 pprodss4v 35872 brpprod 35873 brimg 35925 brapply 35926 funpartfun 35931 dfrdg4 35939 xrnss3v 38354 funressnfv 47044 funressnvmo 47046 afv2res 47240 tposres0 48865 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |