MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brresi Structured version   Visualization version   GIF version

Theorem brresi 5989
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
Hypothesis
Ref Expression
opelresi.1 𝐶 ∈ V
Assertion
Ref Expression
brresi (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))

Proof of Theorem brresi
StepHypRef Expression
1 opelresi.1 . 2 𝐶 ∈ V
2 brres 5987 . 2 (𝐶 ∈ V → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
31, 2ax-mp 5 1 (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2104  Vcvv 3472   class class class wbr 5147  cres 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-res 5687
This theorem is referenced by:  dfres2  6040  poirr2  6124  cores  6247  resco  6248  rnco  6250  dfpo2  6294  fnres  6676  fvres  6909  nfunsn  6932  eqfunresadj  7359  1stconst  8088  2ndconst  8089  fsplit  8105  fprlem1  8287  wfrlem5OLD  8315  ttrclresv  9714  ttrclselem2  9723  frrlem15  9754  dprd2da  19953  metustid  24283  dvres  25660  dvres2  25661  ltgov  28115  hlimadd  30713  hhcmpl  30720  hhcms  30723  hlim0  30755  dfdm5  35048  dfrn5  35049  txpss3v  35154  brtxp  35156  pprodss4v  35160  brpprod  35161  brimg  35213  brapply  35214  funpartfun  35219  dfrdg4  35227  xrnss3v  37545  funressnfv  46051  funressnvmo  46053  afv2res  46245  setrec2lem2  47826
  Copyright terms: Public domain W3C validator