MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brresi Structured version   Visualization version   GIF version

Theorem brresi 5912
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
Hypothesis
Ref Expression
opelresi.1 𝐶 ∈ V
Assertion
Ref Expression
brresi (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))

Proof of Theorem brresi
StepHypRef Expression
1 opelresi.1 . 2 𝐶 ∈ V
2 brres 5910 . 2 (𝐶 ∈ V → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
31, 2ax-mp 5 1 (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2104  Vcvv 3437   class class class wbr 5081  cres 5602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-res 5612
This theorem is referenced by:  dfres2  5961  poirr2  6044  cores  6167  resco  6168  rnco  6170  dfpo2  6214  fnres  6590  fvres  6823  nfunsn  6843  1stconst  7972  2ndconst  7973  fsplit  7989  fprlem1  8147  wfrlem5OLD  8175  ttrclresv  9519  ttrclselem2  9528  frrlem15  9559  dprd2da  19690  metustid  23755  dvres  25120  dvres2  25121  ltgov  27003  hlimadd  29600  hhcmpl  29607  hhcms  29610  hlim0  29642  eqfunresadj  33780  dfdm5  33792  dfrn5  33793  txpss3v  34225  brtxp  34227  pprodss4v  34231  brpprod  34232  brimg  34284  brapply  34285  funpartfun  34290  dfrdg4  34298  xrnss3v  36544  funressnfv  44595  funressnvmo  44597  afv2res  44789  setrec2lem2  46458
  Copyright terms: Public domain W3C validator