![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
opelresi.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | brres 6016 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 |
This theorem is referenced by: dfres2 6070 poirr2 6156 cores 6280 resco 6281 rnco 6283 dfpo2 6327 fnres 6707 fvres 6939 nfunsn 6962 eqfunresadj 7396 1stconst 8141 2ndconst 8142 fsplit 8158 fprlem1 8341 wfrlem5OLD 8369 ttrclresv 9786 ttrclselem2 9795 frrlem15 9826 dprd2da 20086 metustid 24588 dvres 25966 dvres2 25967 ltgov 28623 hlimadd 31225 hhcmpl 31232 hhcms 31235 hlim0 31267 dfdm5 35736 dfrn5 35737 txpss3v 35842 brtxp 35844 pprodss4v 35848 brpprod 35849 brimg 35901 brapply 35902 funpartfun 35907 dfrdg4 35915 xrnss3v 38328 funressnfv 46958 funressnvmo 46960 afv2res 47154 setrec2lem2 48786 |
Copyright terms: Public domain | W3C validator |