| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | brres 5934 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: dfres2 5989 poirr2 6070 cores 6196 resco 6197 rnco 6199 rncoOLD 6200 dfpo2 6243 fnres 6608 fvres 6841 nfunsn 6861 eqfunresadj 7294 1stconst 8030 2ndconst 8031 fsplit 8047 fprlem1 8230 ttrclresv 9607 ttrclselem2 9616 frrlem15 9650 dprd2da 19956 metustid 24469 dvres 25839 dvres2 25840 ltgov 28575 hlimadd 31173 hhcmpl 31180 hhcms 31183 hlim0 31215 dfdm5 35817 dfrn5 35818 txpss3v 35920 brtxp 35922 pprodss4v 35926 brpprod 35927 brimg 35979 brapply 35980 funpartfun 35987 dfrdg4 35995 xrnss3v 38404 funressnfv 47142 funressnvmo 47144 afv2res 47338 tposres0 48976 setrec2lem2 49794 |
| Copyright terms: Public domain | W3C validator |