Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
opelresi.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | brres 5910 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-res 5612 |
This theorem is referenced by: dfres2 5961 poirr2 6044 cores 6167 resco 6168 rnco 6170 dfpo2 6214 fnres 6590 fvres 6823 nfunsn 6843 1stconst 7972 2ndconst 7973 fsplit 7989 fprlem1 8147 wfrlem5OLD 8175 ttrclresv 9519 ttrclselem2 9528 frrlem15 9559 dprd2da 19690 metustid 23755 dvres 25120 dvres2 25121 ltgov 27003 hlimadd 29600 hhcmpl 29607 hhcms 29610 hlim0 29642 eqfunresadj 33780 dfdm5 33792 dfrn5 33793 txpss3v 34225 brtxp 34227 pprodss4v 34231 brpprod 34232 brimg 34284 brapply 34285 funpartfun 34290 dfrdg4 34298 xrnss3v 36544 funressnfv 44595 funressnvmo 44597 afv2res 44789 setrec2lem2 46458 |
Copyright terms: Public domain | W3C validator |