| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | brres 5937 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-res 5631 |
| This theorem is referenced by: dfres2 5992 poirr2 6073 cores 6198 resco 6199 rnco 6201 dfpo2 6244 fnres 6609 fvres 6841 nfunsn 6862 eqfunresadj 7297 1stconst 8033 2ndconst 8034 fsplit 8050 fprlem1 8233 ttrclresv 9613 ttrclselem2 9622 frrlem15 9653 dprd2da 19923 metustid 24440 dvres 25810 dvres2 25811 ltgov 28542 hlimadd 31137 hhcmpl 31144 hhcms 31147 hlim0 31179 dfdm5 35756 dfrn5 35757 txpss3v 35862 brtxp 35864 pprodss4v 35868 brpprod 35869 brimg 35921 brapply 35922 funpartfun 35927 dfrdg4 35935 xrnss3v 38350 funressnfv 47037 funressnvmo 47039 afv2res 47233 tposres0 48871 setrec2lem2 49689 |
| Copyright terms: Public domain | W3C validator |