MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brresi Structured version   Visualization version   GIF version

Theorem brresi 5936
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
Hypothesis
Ref Expression
opelresi.1 𝐶 ∈ V
Assertion
Ref Expression
brresi (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))

Proof of Theorem brresi
StepHypRef Expression
1 opelresi.1 . 2 𝐶 ∈ V
2 brres 5934 . 2 (𝐶 ∈ V → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
31, 2ax-mp 5 1 (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Vcvv 3436   class class class wbr 5089  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  dfres2  5989  poirr2  6070  cores  6196  resco  6197  rnco  6199  rncoOLD  6200  dfpo2  6243  fnres  6608  fvres  6841  nfunsn  6861  eqfunresadj  7294  1stconst  8030  2ndconst  8031  fsplit  8047  fprlem1  8230  ttrclresv  9607  ttrclselem2  9616  frrlem15  9650  dprd2da  19956  metustid  24469  dvres  25839  dvres2  25840  ltgov  28575  hlimadd  31173  hhcmpl  31180  hhcms  31183  hlim0  31215  dfdm5  35817  dfrn5  35818  txpss3v  35920  brtxp  35922  pprodss4v  35926  brpprod  35927  brimg  35979  brapply  35980  funpartfun  35987  dfrdg4  35995  xrnss3v  38404  funressnfv  47142  funressnvmo  47144  afv2res  47338  tposres0  48976  setrec2lem2  49794
  Copyright terms: Public domain W3C validator