| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | brres 5973 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-res 5666 |
| This theorem is referenced by: dfres2 6028 poirr2 6113 cores 6238 resco 6239 rnco 6241 dfpo2 6285 fnres 6665 fvres 6895 nfunsn 6918 eqfunresadj 7353 1stconst 8099 2ndconst 8100 fsplit 8116 fprlem1 8299 wfrlem5OLD 8327 ttrclresv 9731 ttrclselem2 9740 frrlem15 9771 dprd2da 20025 metustid 24493 dvres 25864 dvres2 25865 ltgov 28576 hlimadd 31174 hhcmpl 31181 hhcms 31184 hlim0 31216 dfdm5 35790 dfrn5 35791 txpss3v 35896 brtxp 35898 pprodss4v 35902 brpprod 35903 brimg 35955 brapply 35956 funpartfun 35961 dfrdg4 35969 xrnss3v 38390 funressnfv 47072 funressnvmo 47074 afv2res 47268 tposres0 48852 setrec2lem2 49558 |
| Copyright terms: Public domain | W3C validator |