MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brresi Structured version   Visualization version   GIF version

Theorem brresi 6018
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
Hypothesis
Ref Expression
opelresi.1 𝐶 ∈ V
Assertion
Ref Expression
brresi (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))

Proof of Theorem brresi
StepHypRef Expression
1 opelresi.1 . 2 𝐶 ∈ V
2 brres 6016 . 2 (𝐶 ∈ V → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
31, 2ax-mp 5 1 (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3488   class class class wbr 5166  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  dfres2  6070  poirr2  6156  cores  6280  resco  6281  rnco  6283  dfpo2  6327  fnres  6707  fvres  6939  nfunsn  6962  eqfunresadj  7396  1stconst  8141  2ndconst  8142  fsplit  8158  fprlem1  8341  wfrlem5OLD  8369  ttrclresv  9786  ttrclselem2  9795  frrlem15  9826  dprd2da  20086  metustid  24588  dvres  25966  dvres2  25967  ltgov  28623  hlimadd  31225  hhcmpl  31232  hhcms  31235  hlim0  31267  dfdm5  35736  dfrn5  35737  txpss3v  35842  brtxp  35844  pprodss4v  35848  brpprod  35849  brimg  35901  brapply  35902  funpartfun  35907  dfrdg4  35915  xrnss3v  38328  funressnfv  46958  funressnvmo  46960  afv2res  47154  setrec2lem2  48786
  Copyright terms: Public domain W3C validator