| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| opelresi.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | brres 5946 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 |
| This theorem is referenced by: dfres2 6001 poirr2 6085 cores 6210 resco 6211 rnco 6213 dfpo2 6257 fnres 6627 fvres 6859 nfunsn 6882 eqfunresadj 7317 1stconst 8056 2ndconst 8057 fsplit 8073 fprlem1 8256 ttrclresv 9646 ttrclselem2 9655 frrlem15 9686 dprd2da 19958 metustid 24475 dvres 25845 dvres2 25846 ltgov 28577 hlimadd 31172 hhcmpl 31179 hhcms 31182 hlim0 31214 dfdm5 35753 dfrn5 35754 txpss3v 35859 brtxp 35861 pprodss4v 35865 brpprod 35866 brimg 35918 brapply 35919 funpartfun 35924 dfrdg4 35932 xrnss3v 38347 funressnfv 47037 funressnvmo 47039 afv2res 47233 tposres0 48858 setrec2lem2 49676 |
| Copyright terms: Public domain | W3C validator |