Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brresi | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
opelresi.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
brresi | ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelresi.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | brres 5895 | . 2 ⊢ (𝐶 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ↾ cres 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-res 5600 |
This theorem is referenced by: dfres2 5946 poirr2 6026 cores 6150 resco 6151 rnco 6153 dfpo2 6196 fnres 6555 fvres 6787 nfunsn 6805 1stconst 7924 2ndconst 7925 fsplit 7941 fsplitOLD 7942 fprlem1 8100 wfrlem5OLD 8128 ttrclresv 9436 ttrclselem2 9445 frrlem15 9499 dprd2da 19626 metustid 23691 dvres 25056 dvres2 25057 ltgov 26939 hlimadd 29534 hhcmpl 29541 hhcms 29544 hlim0 29576 eqfunresadj 33714 dfdm5 33726 dfrn5 33727 txpss3v 34159 brtxp 34161 pprodss4v 34165 brpprod 34166 brimg 34218 brapply 34219 funpartfun 34224 dfrdg4 34232 xrnss3v 36481 funressnfv 44488 funressnvmo 44490 afv2res 44682 setrec2lem2 46352 |
Copyright terms: Public domain | W3C validator |