| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ 𝐵 ∈
FinIII) |
| 2 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ 𝐴 ⊆ 𝒫
𝐵) |
| 3 | 2 | adantr 480 |
. . . . . 6
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → 𝐴 ⊆ 𝒫 𝐵) |
| 4 | | ssrab2 4080 |
. . . . . . . 8
⊢ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ⊆ 𝐴 |
| 5 | 4 | unissi 4916 |
. . . . . . 7
⊢ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ⊆ ∪ 𝐴 |
| 6 | | sspwuni 5100 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴
⊆ 𝐵) |
| 7 | 6 | biimpi 216 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝒫 𝐵 → ∪ 𝐴
⊆ 𝐵) |
| 8 | 5, 7 | sstrid 3995 |
. . . . . 6
⊢ (𝐴 ⊆ 𝒫 𝐵 → ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ⊆ 𝐵) |
| 9 | 3, 8 | syl 17 |
. . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ⊆ 𝐵) |
| 10 | | elpw2g 5333 |
. . . . . 6
⊢ (𝐵 ∈ FinIII →
(∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ∈ 𝒫 𝐵 ↔ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ⊆ 𝐵)) |
| 11 | 10 | ad2antlr 727 |
. . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → (∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ∈ 𝒫 𝐵 ↔ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ⊆ 𝐵)) |
| 12 | 9, 11 | mpbird 257 |
. . . 4
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒} ∈ 𝒫 𝐵) |
| 13 | 12 | fmpttd 7135 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ (𝑒 ∈ ω
↦ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}):ω⟶𝒫 𝐵) |
| 14 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑑 ∈ V |
| 15 | 14 | sucex 7826 |
. . . . . . . . . 10
⊢ suc 𝑑 ∈ V |
| 16 | | sssucid 6464 |
. . . . . . . . . 10
⊢ 𝑑 ⊆ suc 𝑑 |
| 17 | | ssdomg 9040 |
. . . . . . . . . 10
⊢ (suc
𝑑 ∈ V → (𝑑 ⊆ suc 𝑑 → 𝑑 ≼ suc 𝑑)) |
| 18 | 15, 16, 17 | mp2 9 |
. . . . . . . . 9
⊢ 𝑑 ≼ suc 𝑑 |
| 19 | | domtr 9047 |
. . . . . . . . 9
⊢ ((𝑓 ≼ 𝑑 ∧ 𝑑 ≼ suc 𝑑) → 𝑓 ≼ suc 𝑑) |
| 20 | 18, 19 | mpan2 691 |
. . . . . . . 8
⊢ (𝑓 ≼ 𝑑 → 𝑓 ≼ suc 𝑑) |
| 21 | 20 | a1i 11 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐴 → (𝑓 ≼ 𝑑 → 𝑓 ≼ suc 𝑑)) |
| 22 | 21 | ss2rabi 4077 |
. . . . . 6
⊢ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ⊆ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} |
| 23 | | uniss 4915 |
. . . . . 6
⊢ ({𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ⊆ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} → ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ⊆ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑}) |
| 24 | 22, 23 | mp1i 13 |
. . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ⊆ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑}) |
| 25 | | id 22 |
. . . . . 6
⊢ (𝑑 ∈ ω → 𝑑 ∈
ω) |
| 26 | | pwexg 5378 |
. . . . . . . . 9
⊢ (𝐵 ∈ FinIII →
𝒫 𝐵 ∈
V) |
| 27 | 26 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ 𝒫 𝐵 ∈
V) |
| 28 | 27, 2 | ssexd 5324 |
. . . . . . 7
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ 𝐴 ∈
V) |
| 29 | | rabexg 5337 |
. . . . . . 7
⊢ (𝐴 ∈ V → {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ∈ V) |
| 30 | | uniexg 7760 |
. . . . . . 7
⊢ ({𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ∈ V → ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ∈ V) |
| 31 | 28, 29, 30 | 3syl 18 |
. . . . . 6
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ∈ V) |
| 32 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑒 = 𝑑 → (𝑓 ≼ 𝑒 ↔ 𝑓 ≼ 𝑑)) |
| 33 | 32 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑒 = 𝑑 → {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} = {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑}) |
| 34 | 33 | unieqd 4920 |
. . . . . . 7
⊢ (𝑒 = 𝑑 → ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} = ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑}) |
| 35 | | eqid 2737 |
. . . . . . 7
⊢ (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) |
| 36 | 34, 35 | fvmptg 7014 |
. . . . . 6
⊢ ((𝑑 ∈ ω ∧ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑑} ∈ V) → ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘𝑑) = ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑}) |
| 37 | 25, 31, 36 | syl2anr 597 |
. . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘𝑑) = ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑑}) |
| 38 | | peano2 7912 |
. . . . . 6
⊢ (𝑑 ∈ ω → suc 𝑑 ∈
ω) |
| 39 | | rabexg 5337 |
. . . . . . 7
⊢ (𝐴 ∈ V → {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} ∈ V) |
| 40 | | uniexg 7760 |
. . . . . . 7
⊢ ({𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} ∈ V → ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} ∈ V) |
| 41 | 28, 39, 40 | 3syl 18 |
. . . . . 6
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} ∈ V) |
| 42 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑒 = suc 𝑑 → (𝑓 ≼ 𝑒 ↔ 𝑓 ≼ suc 𝑑)) |
| 43 | 42 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑒 = suc 𝑑 → {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} = {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑}) |
| 44 | 43 | unieqd 4920 |
. . . . . . 7
⊢ (𝑒 = suc 𝑑 → ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒} = ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑}) |
| 45 | 44, 35 | fvmptg 7014 |
. . . . . 6
⊢ ((suc
𝑑 ∈ ω ∧
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑} ∈ V) → ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘suc 𝑑) = ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑}) |
| 46 | 38, 41, 45 | syl2anr 597 |
. . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘suc 𝑑) = ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ suc 𝑑}) |
| 47 | 24, 37, 46 | 3sstr4d 4039 |
. . . 4
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘suc 𝑑)) |
| 48 | 47 | ralrimiva 3146 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ∀𝑑 ∈
ω ((𝑒 ∈ ω
↦ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘suc 𝑑)) |
| 49 | | fin34i 10421 |
. . 3
⊢ ((𝐵 ∈ FinIII ∧
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}):ω⟶𝒫 𝐵 ∧ ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})‘suc 𝑑)) → ∪ ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ∈ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})) |
| 50 | 1, 13, 48, 49 | syl3anc 1373 |
. 2
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ∪ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ∈ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})) |
| 51 | | fin1a2lem11 10450 |
. . . . . 6
⊢ ((
[⊊] Or 𝐴
∧ 𝐴 ⊆ Fin) →
ran (𝑒 ∈ ω
↦ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅})) |
| 52 | 51 | adantrr 717 |
. . . . 5
⊢ ((
[⊊] Or 𝐴
∧ (𝐴 ⊆ Fin ∧
𝐴 ≠ ∅)) → ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅})) |
| 53 | 52 | 3ad2antl2 1187 |
. . . 4
⊢ (((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅})) |
| 54 | 53 | adantr 480 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ran (𝑒 ∈
ω ↦ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅})) |
| 55 | | simpll3 1215 |
. . . . . 6
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ¬ ∪ 𝐴 ∈ 𝐴) |
| 56 | | simplrr 778 |
. . . . . . 7
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ 𝐴 ≠
∅) |
| 57 | | sspwuni 5100 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝒫 ∅
↔ ∪ 𝐴 ⊆ ∅) |
| 58 | | ss0b 4401 |
. . . . . . . . . . 11
⊢ (∪ 𝐴
⊆ ∅ ↔ ∪ 𝐴 = ∅) |
| 59 | 57, 58 | bitri 275 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝒫 ∅
↔ ∪ 𝐴 = ∅) |
| 60 | | pw0 4812 |
. . . . . . . . . . . . 13
⊢ 𝒫
∅ = {∅} |
| 61 | 60 | sseq2i 4013 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝒫 ∅
↔ 𝐴 ⊆
{∅}) |
| 62 | | sssn 4826 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅})) |
| 63 | 61, 62 | bitri 275 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝒫 ∅
↔ (𝐴 = ∅ ∨
𝐴 =
{∅})) |
| 64 | | df-ne 2941 |
. . . . . . . . . . . 12
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
| 65 | | 0ex 5307 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
∈ V |
| 66 | 65 | unisn 4926 |
. . . . . . . . . . . . . . . 16
⊢ ∪ {∅} = ∅ |
| 67 | 65 | snid 4662 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ {∅} |
| 68 | 66, 67 | eqeltri 2837 |
. . . . . . . . . . . . . . 15
⊢ ∪ {∅} ∈ {∅} |
| 69 | | unieq 4918 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = {∅} → ∪ 𝐴 =
∪ {∅}) |
| 70 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = {∅} → 𝐴 = {∅}) |
| 71 | 69, 70 | eleq12d 2835 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = {∅} → (∪ 𝐴
∈ 𝐴 ↔ ∪ {∅} ∈ {∅})) |
| 72 | 68, 71 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = {∅} → ∪ 𝐴
∈ 𝐴) |
| 73 | 72 | orim2i 911 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 = ∅ ∨ ∪ 𝐴
∈ 𝐴)) |
| 74 | 73 | ord 865 |
. . . . . . . . . . . 12
⊢ ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (¬
𝐴 = ∅ → ∪ 𝐴
∈ 𝐴)) |
| 75 | 64, 74 | biimtrid 242 |
. . . . . . . . . . 11
⊢ ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ≠ ∅ → ∪ 𝐴
∈ 𝐴)) |
| 76 | 63, 75 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ 𝒫 ∅
→ (𝐴 ≠ ∅
→ ∪ 𝐴 ∈ 𝐴)) |
| 77 | 59, 76 | sylbir 235 |
. . . . . . . . 9
⊢ (∪ 𝐴 =
∅ → (𝐴 ≠
∅ → ∪ 𝐴 ∈ 𝐴)) |
| 78 | 77 | com12 32 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ → (∪ 𝐴 =
∅ → ∪ 𝐴 ∈ 𝐴)) |
| 79 | 78 | con3d 152 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → (¬
∪ 𝐴 ∈ 𝐴 → ¬ ∪
𝐴 =
∅)) |
| 80 | 56, 55, 79 | sylc 65 |
. . . . . 6
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ¬ ∪ 𝐴 = ∅) |
| 81 | | ioran 986 |
. . . . . 6
⊢ (¬
(∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅) ↔ (¬ ∪ 𝐴
∈ 𝐴 ∧ ¬ ∪ 𝐴 =
∅)) |
| 82 | 55, 80, 81 | sylanbrc 583 |
. . . . 5
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ¬ (∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅)) |
| 83 | | uniun 4930 |
. . . . . . . 8
⊢ ∪ (𝐴
∪ {∅}) = (∪ 𝐴 ∪ ∪
{∅}) |
| 84 | 66 | uneq2i 4165 |
. . . . . . . 8
⊢ (∪ 𝐴
∪ ∪ {∅}) = (∪
𝐴 ∪
∅) |
| 85 | | un0 4394 |
. . . . . . . 8
⊢ (∪ 𝐴
∪ ∅) = ∪ 𝐴 |
| 86 | 83, 84, 85 | 3eqtri 2769 |
. . . . . . 7
⊢ ∪ (𝐴
∪ {∅}) = ∪ 𝐴 |
| 87 | 86 | eleq1i 2832 |
. . . . . 6
⊢ (∪ (𝐴
∪ {∅}) ∈ (𝐴
∪ {∅}) ↔ ∪ 𝐴 ∈ (𝐴 ∪ {∅})) |
| 88 | | elun 4153 |
. . . . . 6
⊢ (∪ 𝐴
∈ (𝐴 ∪ {∅})
↔ (∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 ∈
{∅})) |
| 89 | 65 | elsn2 4665 |
. . . . . . 7
⊢ (∪ 𝐴
∈ {∅} ↔ ∪ 𝐴 = ∅) |
| 90 | 89 | orbi2i 913 |
. . . . . 6
⊢ ((∪ 𝐴
∈ 𝐴 ∨ ∪ 𝐴
∈ {∅}) ↔ (∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅)) |
| 91 | 87, 88, 90 | 3bitri 297 |
. . . . 5
⊢ (∪ (𝐴
∪ {∅}) ∈ (𝐴
∪ {∅}) ↔ (∪ 𝐴 ∈ 𝐴 ∨ ∪ 𝐴 = ∅)) |
| 92 | 82, 91 | sylnibr 329 |
. . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ¬ ∪ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})) |
| 93 | | unieq 4918 |
. . . . . 6
⊢ (ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅}) → ∪ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = ∪ (𝐴 ∪
{∅})) |
| 94 | | id 22 |
. . . . . 6
⊢ (ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅})) |
| 95 | 93, 94 | eleq12d 2835 |
. . . . 5
⊢ (ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅}) → (∪ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ∈ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ↔ ∪ (𝐴 ∪ {∅}) ∈ (𝐴 ∪
{∅}))) |
| 96 | 95 | notbid 318 |
. . . 4
⊢ (ran
(𝑒 ∈ ω ↦
∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅}) → (¬ ∪ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ∈ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ↔ ¬ ∪
(𝐴 ∪ {∅}) ∈
(𝐴 ∪
{∅}))) |
| 97 | 92, 96 | syl5ibrcom 247 |
. . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ (ran (𝑒 ∈
ω ↦ ∪ {𝑓 ∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) = (𝐴 ∪ {∅}) → ¬ ∪ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ∈ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}))) |
| 98 | 54, 97 | mpd 15 |
. 2
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII)
→ ¬ ∪ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒}) ∈ ran (𝑒 ∈ ω ↦ ∪ {𝑓
∈ 𝐴 ∣ 𝑓 ≼ 𝑒})) |
| 99 | 50, 98 | pm2.65da 817 |
1
⊢ (((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬
𝐵 ∈
FinIII) |