MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem12 Structured version   Visualization version   GIF version

Theorem fin1a2lem12 10388
Description: Lemma for fin1a2 10392. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem12 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)

Proof of Theorem fin1a2lem12
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐵 ∈ FinIII)
2 simpll1 1212 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ⊆ 𝒫 𝐵)
32adantr 481 . . . . . 6 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → 𝐴 ⊆ 𝒫 𝐵)
4 ssrab2 4073 . . . . . . . 8 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
54unissi 4910 . . . . . . 7 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
6 sspwuni 5096 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
76biimpi 215 . . . . . . 7 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
85, 7sstrid 3989 . . . . . 6 (𝐴 ⊆ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
93, 8syl 17 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
10 elpw2g 5337 . . . . . 6 (𝐵 ∈ FinIII → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
1110ad2antlr 725 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
129, 11mpbird 256 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵)
1312fmpttd 7099 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵)
14 vex 3477 . . . . . . . . . . 11 𝑑 ∈ V
1514sucex 7777 . . . . . . . . . 10 suc 𝑑 ∈ V
16 sssucid 6433 . . . . . . . . . 10 𝑑 ⊆ suc 𝑑
17 ssdomg 8979 . . . . . . . . . 10 (suc 𝑑 ∈ V → (𝑑 ⊆ suc 𝑑𝑑 ≼ suc 𝑑))
1815, 16, 17mp2 9 . . . . . . . . 9 𝑑 ≼ suc 𝑑
19 domtr 8986 . . . . . . . . 9 ((𝑓𝑑𝑑 ≼ suc 𝑑) → 𝑓 ≼ suc 𝑑)
2018, 19mpan2 689 . . . . . . . 8 (𝑓𝑑𝑓 ≼ suc 𝑑)
2120a1i 11 . . . . . . 7 (𝑓𝐴 → (𝑓𝑑𝑓 ≼ suc 𝑑))
2221ss2rabi 4070 . . . . . 6 {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑}
23 uniss 4909 . . . . . 6 ({𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑} → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
2422, 23mp1i 13 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
25 id 22 . . . . . 6 (𝑑 ∈ ω → 𝑑 ∈ ω)
26 pwexg 5369 . . . . . . . . 9 (𝐵 ∈ FinIII → 𝒫 𝐵 ∈ V)
2726adantl 482 . . . . . . . 8 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝒫 𝐵 ∈ V)
2827, 2ssexd 5317 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ∈ V)
29 rabexg 5324 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
30 uniexg 7713 . . . . . . 7 ({𝑓𝐴𝑓𝑑} ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
3128, 29, 303syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓𝑑} ∈ V)
32 breq2 5145 . . . . . . . . 9 (𝑒 = 𝑑 → (𝑓𝑒𝑓𝑑))
3332rabbidv 3439 . . . . . . . 8 (𝑒 = 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
3433unieqd 4915 . . . . . . 7 (𝑒 = 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
35 eqid 2731 . . . . . . 7 (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})
3634, 35fvmptg 6982 . . . . . 6 ((𝑑 ∈ ω ∧ {𝑓𝐴𝑓𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
3725, 31, 36syl2anr 597 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
38 peano2 7863 . . . . . 6 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
39 rabexg 5324 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
40 uniexg 7713 . . . . . . 7 ({𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
4128, 39, 403syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
42 breq2 5145 . . . . . . . . 9 (𝑒 = suc 𝑑 → (𝑓𝑒𝑓 ≼ suc 𝑑))
4342rabbidv 3439 . . . . . . . 8 (𝑒 = suc 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4443unieqd 4915 . . . . . . 7 (𝑒 = suc 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4544, 35fvmptg 6982 . . . . . 6 ((suc 𝑑 ∈ ω ∧ {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4638, 41, 45syl2anr 597 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4724, 37, 463sstr4d 4025 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
4847ralrimiva 3145 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
49 fin34i 10358 . . 3 ((𝐵 ∈ FinIII ∧ (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵 ∧ ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
501, 13, 48, 49syl3anc 1371 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
51 fin1a2lem11 10387 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5251adantrr 715 . . . . 5 (( [] Or 𝐴 ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
53523ad2antl2 1186 . . . 4 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5453adantr 481 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
55 simpll3 1214 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴𝐴)
56 simplrr 776 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ≠ ∅)
57 sspwuni 5096 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ ∅)
58 ss0b 4393 . . . . . . . . . . 11 ( 𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
5957, 58bitri 274 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 = ∅)
60 pw0 4808 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
6160sseq2i 4007 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ {∅})
62 sssn 4822 . . . . . . . . . . . 12 (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
6361, 62bitri 274 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
64 df-ne 2940 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65 0ex 5300 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
6665unisn 4923 . . . . . . . . . . . . . . . 16 {∅} = ∅
6765snid 4658 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅}
6866, 67eqeltri 2828 . . . . . . . . . . . . . . 15 {∅} ∈ {∅}
69 unieq 4912 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
70 id 22 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
7169, 70eleq12d 2826 . . . . . . . . . . . . . . 15 (𝐴 = {∅} → ( 𝐴𝐴 {∅} ∈ {∅}))
7268, 71mpbiri 257 . . . . . . . . . . . . . 14 (𝐴 = {∅} → 𝐴𝐴)
7372orim2i 909 . . . . . . . . . . . . 13 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 = ∅ ∨ 𝐴𝐴))
7473ord 862 . . . . . . . . . . . 12 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (¬ 𝐴 = ∅ → 𝐴𝐴))
7564, 74biimtrid 241 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ≠ ∅ → 𝐴𝐴))
7663, 75sylbi 216 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7759, 76sylbir 234 . . . . . . . . 9 ( 𝐴 = ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7877com12 32 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 = ∅ → 𝐴𝐴))
7978con3d 152 . . . . . . 7 (𝐴 ≠ ∅ → (¬ 𝐴𝐴 → ¬ 𝐴 = ∅))
8056, 55, 79sylc 65 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴 = ∅)
81 ioran 982 . . . . . 6 (¬ ( 𝐴𝐴 𝐴 = ∅) ↔ (¬ 𝐴𝐴 ∧ ¬ 𝐴 = ∅))
8255, 80, 81sylanbrc 583 . . . . 5 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ( 𝐴𝐴 𝐴 = ∅))
83 uniun 4927 . . . . . . . 8 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
8466uneq2i 4156 . . . . . . . 8 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
85 un0 4386 . . . . . . . 8 ( 𝐴 ∪ ∅) = 𝐴
8683, 84, 853eqtri 2763 . . . . . . 7 (𝐴 ∪ {∅}) = 𝐴
8786eleq1i 2823 . . . . . 6 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ 𝐴 ∈ (𝐴 ∪ {∅}))
88 elun 4144 . . . . . 6 ( 𝐴 ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 ∈ {∅}))
8965elsn2 4661 . . . . . . 7 ( 𝐴 ∈ {∅} ↔ 𝐴 = ∅)
9089orbi2i 911 . . . . . 6 (( 𝐴𝐴 𝐴 ∈ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9187, 88, 903bitri 296 . . . . 5 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9282, 91sylnibr 328 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}))
93 unieq 4912 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
94 id 22 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
9593, 94eleq12d 2826 . . . . 5 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ( ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9695notbid 317 . . . 4 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → (¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9792, 96syl5ibrcom 246 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})))
9854, 97mpd 15 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
9950, 98pm2.65da 815 1 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  {crab 3431  Vcvv 3473  cun 3942  wss 3944  c0 4318  𝒫 cpw 4596  {csn 4622   cuni 4901   class class class wbr 5141  cmpt 5224   Or wor 5580  ran crn 5670  suc csuc 6355  wf 6528  cfv 6532   [] crpss 7695  ωcom 7838  cdom 8920  Fincfn 8922  FinIIIcfin3 10258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-rpss 7696  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-wdom 9542  df-card 9916  df-fin4 10264  df-fin3 10265
This theorem is referenced by:  fin1a2s  10391
  Copyright terms: Public domain W3C validator