Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem12 Structured version   Visualization version   GIF version

Theorem fin1a2lem12 9827
 Description: Lemma for fin1a2 9831. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem12 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)

Proof of Theorem fin1a2lem12
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐵 ∈ FinIII)
2 simpll1 1206 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ⊆ 𝒫 𝐵)
32adantr 481 . . . . . 6 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → 𝐴 ⊆ 𝒫 𝐵)
4 ssrab2 4060 . . . . . . . 8 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
54unissi 4860 . . . . . . 7 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
6 sspwuni 5019 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
76biimpi 217 . . . . . . 7 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
85, 7sstrid 3982 . . . . . 6 (𝐴 ⊆ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
93, 8syl 17 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
10 elpw2g 5244 . . . . . 6 (𝐵 ∈ FinIII → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
1110ad2antlr 723 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
129, 11mpbird 258 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵)
1312fmpttd 6877 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵)
14 vex 3503 . . . . . . . . . . 11 𝑑 ∈ V
1514sucex 7519 . . . . . . . . . 10 suc 𝑑 ∈ V
16 sssucid 6267 . . . . . . . . . 10 𝑑 ⊆ suc 𝑑
17 ssdomg 8549 . . . . . . . . . 10 (suc 𝑑 ∈ V → (𝑑 ⊆ suc 𝑑𝑑 ≼ suc 𝑑))
1815, 16, 17mp2 9 . . . . . . . . 9 𝑑 ≼ suc 𝑑
19 domtr 8556 . . . . . . . . 9 ((𝑓𝑑𝑑 ≼ suc 𝑑) → 𝑓 ≼ suc 𝑑)
2018, 19mpan2 687 . . . . . . . 8 (𝑓𝑑𝑓 ≼ suc 𝑑)
2120a1i 11 . . . . . . 7 (𝑓𝐴 → (𝑓𝑑𝑓 ≼ suc 𝑑))
2221ss2rabi 4057 . . . . . 6 {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑}
23 uniss 4858 . . . . . 6 ({𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑} → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
2422, 23mp1i 13 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
25 id 22 . . . . . 6 (𝑑 ∈ ω → 𝑑 ∈ ω)
26 pwexg 5276 . . . . . . . . 9 (𝐵 ∈ FinIII → 𝒫 𝐵 ∈ V)
2726adantl 482 . . . . . . . 8 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝒫 𝐵 ∈ V)
2827, 2ssexd 5225 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ∈ V)
29 rabexg 5231 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
30 uniexg 7461 . . . . . . 7 ({𝑓𝐴𝑓𝑑} ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
3128, 29, 303syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓𝑑} ∈ V)
32 breq2 5067 . . . . . . . . 9 (𝑒 = 𝑑 → (𝑓𝑒𝑓𝑑))
3332rabbidv 3486 . . . . . . . 8 (𝑒 = 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
3433unieqd 4847 . . . . . . 7 (𝑒 = 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
35 eqid 2826 . . . . . . 7 (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})
3634, 35fvmptg 6765 . . . . . 6 ((𝑑 ∈ ω ∧ {𝑓𝐴𝑓𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
3725, 31, 36syl2anr 596 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
38 peano2 7595 . . . . . 6 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
39 rabexg 5231 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
40 uniexg 7461 . . . . . . 7 ({𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
4128, 39, 403syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
42 breq2 5067 . . . . . . . . 9 (𝑒 = suc 𝑑 → (𝑓𝑒𝑓 ≼ suc 𝑑))
4342rabbidv 3486 . . . . . . . 8 (𝑒 = suc 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4443unieqd 4847 . . . . . . 7 (𝑒 = suc 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4544, 35fvmptg 6765 . . . . . 6 ((suc 𝑑 ∈ ω ∧ {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4638, 41, 45syl2anr 596 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4724, 37, 463sstr4d 4018 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
4847ralrimiva 3187 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
49 fin34i 9797 . . 3 ((𝐵 ∈ FinIII ∧ (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵 ∧ ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
501, 13, 48, 49syl3anc 1365 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
51 fin1a2lem11 9826 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5251adantrr 713 . . . . 5 (( [] Or 𝐴 ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
53523ad2antl2 1180 . . . 4 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5453adantr 481 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
55 simpll3 1208 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴𝐴)
56 simplrr 774 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ≠ ∅)
57 sspwuni 5019 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ ∅)
58 ss0b 4355 . . . . . . . . . . 11 ( 𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
5957, 58bitri 276 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 = ∅)
60 pw0 4744 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
6160sseq2i 4000 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ {∅})
62 sssn 4758 . . . . . . . . . . . 12 (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
6361, 62bitri 276 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
64 df-ne 3022 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65 0ex 5208 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
6665unisn 4853 . . . . . . . . . . . . . . . 16 {∅} = ∅
6765snid 4598 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅}
6866, 67eqeltri 2914 . . . . . . . . . . . . . . 15 {∅} ∈ {∅}
69 unieq 4845 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
70 id 22 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
7169, 70eleq12d 2912 . . . . . . . . . . . . . . 15 (𝐴 = {∅} → ( 𝐴𝐴 {∅} ∈ {∅}))
7268, 71mpbiri 259 . . . . . . . . . . . . . 14 (𝐴 = {∅} → 𝐴𝐴)
7372orim2i 906 . . . . . . . . . . . . 13 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 = ∅ ∨ 𝐴𝐴))
7473ord 860 . . . . . . . . . . . 12 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (¬ 𝐴 = ∅ → 𝐴𝐴))
7564, 74syl5bi 243 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ≠ ∅ → 𝐴𝐴))
7663, 75sylbi 218 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7759, 76sylbir 236 . . . . . . . . 9 ( 𝐴 = ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7877com12 32 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 = ∅ → 𝐴𝐴))
7978con3d 155 . . . . . . 7 (𝐴 ≠ ∅ → (¬ 𝐴𝐴 → ¬ 𝐴 = ∅))
8056, 55, 79sylc 65 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴 = ∅)
81 ioran 979 . . . . . 6 (¬ ( 𝐴𝐴 𝐴 = ∅) ↔ (¬ 𝐴𝐴 ∧ ¬ 𝐴 = ∅))
8255, 80, 81sylanbrc 583 . . . . 5 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ( 𝐴𝐴 𝐴 = ∅))
83 uniun 4856 . . . . . . . 8 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
8466uneq2i 4140 . . . . . . . 8 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
85 un0 4348 . . . . . . . 8 ( 𝐴 ∪ ∅) = 𝐴
8683, 84, 853eqtri 2853 . . . . . . 7 (𝐴 ∪ {∅}) = 𝐴
8786eleq1i 2908 . . . . . 6 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ 𝐴 ∈ (𝐴 ∪ {∅}))
88 elun 4129 . . . . . 6 ( 𝐴 ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 ∈ {∅}))
8965elsn2 4601 . . . . . . 7 ( 𝐴 ∈ {∅} ↔ 𝐴 = ∅)
9089orbi2i 908 . . . . . 6 (( 𝐴𝐴 𝐴 ∈ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9187, 88, 903bitri 298 . . . . 5 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9282, 91sylnibr 330 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}))
93 unieq 4845 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
94 id 22 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
9593, 94eleq12d 2912 . . . . 5 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ( ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9695notbid 319 . . . 4 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → (¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9792, 96syl5ibrcom 248 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})))
9854, 97mpd 15 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
9950, 98pm2.65da 813 1 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 843   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  {crab 3147  Vcvv 3500   ∪ cun 3938   ⊆ wss 3940  ∅c0 4295  𝒫 cpw 4542  {csn 4564  ∪ cuni 4837   class class class wbr 5063   ↦ cmpt 5143   Or wor 5472  ran crn 5555  suc csuc 6192  ⟶wf 6350  ‘cfv 6354   [⊊] crpss 7442  ωcom 7573   ≼ cdom 8501  Fincfn 8503  FinIIIcfin3 9697 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-rpss 7443  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-wdom 9017  df-card 9362  df-fin4 9703  df-fin3 9704 This theorem is referenced by:  fin1a2s  9830
 Copyright terms: Public domain W3C validator