| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zindd | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| zindd.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| zindd.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| zindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) |
| zindd.4 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) |
| zindd.5 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
| zindd.6 | ⊢ (𝜁 → 𝜓) |
| zindd.7 | ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) |
| zindd.8 | ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| zindd | ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl 12635 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
| 2 | elznn0nn 12610 | . . . . . . 7 ⊢ (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ) | |
| 5 | 4 | orim2i 910 | . . . . . 6 ⊢ ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
| 7 | zcn 12601 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 8 | 7 | negnegd 11593 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → --𝑦 = 𝑦) |
| 9 | 8 | eleq1d 2818 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ)) |
| 10 | 9 | orbi2d 915 | . . . . 5 ⊢ (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ))) |
| 11 | 6, 10 | mpbid 232 | . . . 4 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ)) |
| 12 | zindd.1 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜓))) |
| 14 | zindd.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜒))) |
| 16 | zindd.3 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) | |
| 17 | 16 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝑦 + 1) → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜏))) |
| 18 | zindd.4 | . . . . . . . 8 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) | |
| 19 | 18 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = -𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜃))) |
| 20 | zindd.6 | . . . . . . 7 ⊢ (𝜁 → 𝜓) | |
| 21 | zindd.7 | . . . . . . . . 9 ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) | |
| 22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → (𝜒 → 𝜏))) |
| 23 | 22 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝜁 → 𝜒) → (𝜁 → 𝜏))) |
| 24 | 13, 15, 17, 19, 20, 23 | nn0ind 12696 | . . . . . 6 ⊢ (-𝑦 ∈ ℕ0 → (𝜁 → 𝜃)) |
| 25 | 24 | com12 32 | . . . . 5 ⊢ (𝜁 → (-𝑦 ∈ ℕ0 → 𝜃)) |
| 26 | 13, 15, 17, 15, 20, 23 | nn0ind 12696 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → 𝜒)) |
| 27 | nnnn0 12516 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
| 28 | 26, 27 | syl11 33 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜒)) |
| 29 | zindd.8 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) | |
| 30 | 28, 29 | mpdd 43 | . . . . 5 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜃)) |
| 31 | 25, 30 | jaod 859 | . . . 4 ⊢ (𝜁 → ((-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ) → 𝜃)) |
| 32 | 11, 31 | syl5 34 | . . 3 ⊢ (𝜁 → (𝑦 ∈ ℤ → 𝜃)) |
| 33 | 32 | ralrimiv 3132 | . 2 ⊢ (𝜁 → ∀𝑦 ∈ ℤ 𝜃) |
| 34 | znegcl 12635 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 35 | negeq 11482 | . . . . . . . . 9 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
| 36 | zcn 12601 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 37 | 36 | negnegd 11593 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
| 38 | 35, 37 | sylan9eqr 2791 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥) |
| 39 | 38 | eqcomd 2740 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
| 40 | 39, 18 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜃)) |
| 41 | 40 | bicomd 223 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃 ↔ 𝜑)) |
| 42 | 34, 41 | rspcdv 3597 | . . . 4 ⊢ (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃 → 𝜑)) |
| 43 | 42 | com12 32 | . . 3 ⊢ (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑)) |
| 44 | 43 | ralrimiv 3132 | . 2 ⊢ (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑) |
| 45 | zindd.5 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) | |
| 46 | 45 | rspccv 3602 | . 2 ⊢ (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂)) |
| 47 | 33, 44, 46 | 3syl 18 | 1 ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 (class class class)co 7413 ℝcr 11136 0cc0 11137 1c1 11138 + caddc 11140 -cneg 11475 ℕcn 12248 ℕ0cn0 12509 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 |
| This theorem is referenced by: efexp 16120 pcexp 16880 mulgaddcom 19086 mulginvcom 19087 mulgneg2 19096 mulgass2 20275 cnfldmulg 21379 clmmulg 25071 xrsmulgzz 32955 |
| Copyright terms: Public domain | W3C validator |