![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zindd | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
zindd.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
zindd.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
zindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) |
zindd.4 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) |
zindd.5 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
zindd.6 | ⊢ (𝜁 → 𝜓) |
zindd.7 | ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) |
zindd.8 | ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
zindd | ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 12650 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
2 | elznn0nn 12625 | . . . . . . 7 ⊢ (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) | |
3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) |
4 | simpr 484 | . . . . . . 7 ⊢ ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ) | |
5 | 4 | orim2i 910 | . . . . . 6 ⊢ ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
7 | zcn 12616 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
8 | 7 | negnegd 11609 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → --𝑦 = 𝑦) |
9 | 8 | eleq1d 2824 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ)) |
10 | 9 | orbi2d 915 | . . . . 5 ⊢ (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ))) |
11 | 6, 10 | mpbid 232 | . . . 4 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ)) |
12 | zindd.1 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜓))) |
14 | zindd.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜒))) |
16 | zindd.3 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) | |
17 | 16 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝑦 + 1) → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜏))) |
18 | zindd.4 | . . . . . . . 8 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) | |
19 | 18 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = -𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜃))) |
20 | zindd.6 | . . . . . . 7 ⊢ (𝜁 → 𝜓) | |
21 | zindd.7 | . . . . . . . . 9 ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) | |
22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → (𝜒 → 𝜏))) |
23 | 22 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝜁 → 𝜒) → (𝜁 → 𝜏))) |
24 | 13, 15, 17, 19, 20, 23 | nn0ind 12711 | . . . . . 6 ⊢ (-𝑦 ∈ ℕ0 → (𝜁 → 𝜃)) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝜁 → (-𝑦 ∈ ℕ0 → 𝜃)) |
26 | 13, 15, 17, 15, 20, 23 | nn0ind 12711 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → 𝜒)) |
27 | nnnn0 12531 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
28 | 26, 27 | syl11 33 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜒)) |
29 | zindd.8 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) | |
30 | 28, 29 | mpdd 43 | . . . . 5 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜃)) |
31 | 25, 30 | jaod 859 | . . . 4 ⊢ (𝜁 → ((-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ) → 𝜃)) |
32 | 11, 31 | syl5 34 | . . 3 ⊢ (𝜁 → (𝑦 ∈ ℤ → 𝜃)) |
33 | 32 | ralrimiv 3143 | . 2 ⊢ (𝜁 → ∀𝑦 ∈ ℤ 𝜃) |
34 | znegcl 12650 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
35 | negeq 11498 | . . . . . . . . 9 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
36 | zcn 12616 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
37 | 36 | negnegd 11609 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
38 | 35, 37 | sylan9eqr 2797 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥) |
39 | 38 | eqcomd 2741 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
40 | 39, 18 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜃)) |
41 | 40 | bicomd 223 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃 ↔ 𝜑)) |
42 | 34, 41 | rspcdv 3614 | . . . 4 ⊢ (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃 → 𝜑)) |
43 | 42 | com12 32 | . . 3 ⊢ (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑)) |
44 | 43 | ralrimiv 3143 | . 2 ⊢ (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑) |
45 | zindd.5 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) | |
46 | 45 | rspccv 3619 | . 2 ⊢ (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂)) |
47 | 33, 44, 46 | 3syl 18 | 1 ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 -cneg 11491 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: efexp 16134 pcexp 16893 mulgaddcom 19129 mulginvcom 19130 mulgneg2 19139 mulgass2 20323 cnfldmulg 21434 clmmulg 25148 xrsmulgzz 32994 |
Copyright terms: Public domain | W3C validator |