MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zindd Structured version   Visualization version   GIF version

Theorem zindd 12717
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1 (𝑥 = 0 → (𝜑𝜓))
zindd.2 (𝑥 = 𝑦 → (𝜑𝜒))
zindd.3 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
zindd.4 (𝑥 = -𝑦 → (𝜑𝜃))
zindd.5 (𝑥 = 𝐴 → (𝜑𝜂))
zindd.6 (𝜁𝜓)
zindd.7 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
zindd.8 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
Assertion
Ref Expression
zindd (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜂,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥   𝑥,𝑦,𝜁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 12650 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
2 elznn0nn 12625 . . . . . . 7 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
31, 2sylib 218 . . . . . 6 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
4 simpr 484 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ)
54orim2i 910 . . . . . 6 ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
63, 5syl 17 . . . . 5 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
7 zcn 12616 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
87negnegd 11609 . . . . . . 7 (𝑦 ∈ ℤ → --𝑦 = 𝑦)
98eleq1d 2824 . . . . . 6 (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ))
109orbi2d 915 . . . . 5 (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0𝑦 ∈ ℕ)))
116, 10mpbid 232 . . . 4 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0𝑦 ∈ ℕ))
12 zindd.1 . . . . . . . 8 (𝑥 = 0 → (𝜑𝜓))
1312imbi2d 340 . . . . . . 7 (𝑥 = 0 → ((𝜁𝜑) ↔ (𝜁𝜓)))
14 zindd.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1514imbi2d 340 . . . . . . 7 (𝑥 = 𝑦 → ((𝜁𝜑) ↔ (𝜁𝜒)))
16 zindd.3 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
1716imbi2d 340 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝜁𝜑) ↔ (𝜁𝜏)))
18 zindd.4 . . . . . . . 8 (𝑥 = -𝑦 → (𝜑𝜃))
1918imbi2d 340 . . . . . . 7 (𝑥 = -𝑦 → ((𝜁𝜑) ↔ (𝜁𝜃)))
20 zindd.6 . . . . . . 7 (𝜁𝜓)
21 zindd.7 . . . . . . . . 9 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
2221com12 32 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁 → (𝜒𝜏)))
2322a2d 29 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝜁𝜒) → (𝜁𝜏)))
2413, 15, 17, 19, 20, 23nn0ind 12711 . . . . . 6 (-𝑦 ∈ ℕ0 → (𝜁𝜃))
2524com12 32 . . . . 5 (𝜁 → (-𝑦 ∈ ℕ0𝜃))
2613, 15, 17, 15, 20, 23nn0ind 12711 . . . . . . 7 (𝑦 ∈ ℕ0 → (𝜁𝜒))
27 nnnn0 12531 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
2826, 27syl11 33 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → 𝜒))
29 zindd.8 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
3028, 29mpdd 43 . . . . 5 (𝜁 → (𝑦 ∈ ℕ → 𝜃))
3125, 30jaod 859 . . . 4 (𝜁 → ((-𝑦 ∈ ℕ0𝑦 ∈ ℕ) → 𝜃))
3211, 31syl5 34 . . 3 (𝜁 → (𝑦 ∈ ℤ → 𝜃))
3332ralrimiv 3143 . 2 (𝜁 → ∀𝑦 ∈ ℤ 𝜃)
34 znegcl 12650 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
35 negeq 11498 . . . . . . . . 9 (𝑦 = -𝑥 → -𝑦 = --𝑥)
36 zcn 12616 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3736negnegd 11609 . . . . . . . . 9 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
3835, 37sylan9eqr 2797 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥)
3938eqcomd 2741 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
4039, 18syl 17 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜃))
4140bicomd 223 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃𝜑))
4234, 41rspcdv 3614 . . . 4 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃𝜑))
4342com12 32 . . 3 (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑))
4443ralrimiv 3143 . 2 (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑)
45 zindd.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜂))
4645rspccv 3619 . 2 (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂))
4733, 44, 463syl 18 1 (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  -cneg 11491  cn 12264  0cn0 12524  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612
This theorem is referenced by:  efexp  16134  pcexp  16893  mulgaddcom  19129  mulginvcom  19130  mulgneg2  19139  mulgass2  20323  cnfldmulg  21434  clmmulg  25148  xrsmulgzz  32994
  Copyright terms: Public domain W3C validator