MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zindd Structured version   Visualization version   GIF version

Theorem zindd 11740
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1 (𝑥 = 0 → (𝜑𝜓))
zindd.2 (𝑥 = 𝑦 → (𝜑𝜒))
zindd.3 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
zindd.4 (𝑥 = -𝑦 → (𝜑𝜃))
zindd.5 (𝑥 = 𝐴 → (𝜑𝜂))
zindd.6 (𝜁𝜓)
zindd.7 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
zindd.8 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
Assertion
Ref Expression
zindd (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜂,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥   𝑥,𝑦,𝜁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 11674 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
2 elznn0nn 11653 . . . . . . 7 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
31, 2sylib 209 . . . . . 6 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
4 simpr 473 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ)
54orim2i 925 . . . . . 6 ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
63, 5syl 17 . . . . 5 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
7 zcn 11644 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
87negnegd 10664 . . . . . . 7 (𝑦 ∈ ℤ → --𝑦 = 𝑦)
98eleq1d 2870 . . . . . 6 (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ))
109orbi2d 930 . . . . 5 (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0𝑦 ∈ ℕ)))
116, 10mpbid 223 . . . 4 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0𝑦 ∈ ℕ))
12 zindd.1 . . . . . . . 8 (𝑥 = 0 → (𝜑𝜓))
1312imbi2d 331 . . . . . . 7 (𝑥 = 0 → ((𝜁𝜑) ↔ (𝜁𝜓)))
14 zindd.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1514imbi2d 331 . . . . . . 7 (𝑥 = 𝑦 → ((𝜁𝜑) ↔ (𝜁𝜒)))
16 zindd.3 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
1716imbi2d 331 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝜁𝜑) ↔ (𝜁𝜏)))
18 zindd.4 . . . . . . . 8 (𝑥 = -𝑦 → (𝜑𝜃))
1918imbi2d 331 . . . . . . 7 (𝑥 = -𝑦 → ((𝜁𝜑) ↔ (𝜁𝜃)))
20 zindd.6 . . . . . . 7 (𝜁𝜓)
21 zindd.7 . . . . . . . . 9 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
2221com12 32 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁 → (𝜒𝜏)))
2322a2d 29 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝜁𝜒) → (𝜁𝜏)))
2413, 15, 17, 19, 20, 23nn0ind 11734 . . . . . 6 (-𝑦 ∈ ℕ0 → (𝜁𝜃))
2524com12 32 . . . . 5 (𝜁 → (-𝑦 ∈ ℕ0𝜃))
2613, 15, 17, 15, 20, 23nn0ind 11734 . . . . . . 7 (𝑦 ∈ ℕ0 → (𝜁𝜒))
27 nnnn0 11562 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
2826, 27syl11 33 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → 𝜒))
29 zindd.8 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
3028, 29mpdd 43 . . . . 5 (𝜁 → (𝑦 ∈ ℕ → 𝜃))
3125, 30jaod 877 . . . 4 (𝜁 → ((-𝑦 ∈ ℕ0𝑦 ∈ ℕ) → 𝜃))
3211, 31syl5 34 . . 3 (𝜁 → (𝑦 ∈ ℤ → 𝜃))
3332ralrimiv 3153 . 2 (𝜁 → ∀𝑦 ∈ ℤ 𝜃)
34 znegcl 11674 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
35 negeq 10554 . . . . . . . . 9 (𝑦 = -𝑥 → -𝑦 = --𝑥)
36 zcn 11644 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3736negnegd 10664 . . . . . . . . 9 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
3835, 37sylan9eqr 2862 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥)
3938eqcomd 2812 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
4039, 18syl 17 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜃))
4140bicomd 214 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃𝜑))
4234, 41rspcdv 3505 . . . 4 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃𝜑))
4342com12 32 . . 3 (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑))
4443ralrimiv 3153 . 2 (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑)
45 zindd.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜂))
4645rspccv 3499 . 2 (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂))
4733, 44, 463syl 18 1 (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2156  wral 3096  (class class class)co 6870  cr 10216  0cc0 10217  1c1 10218   + caddc 10220  -cneg 10548  cn 11301  0cn0 11555  cz 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-n0 11556  df-z 11640
This theorem is referenced by:  efexp  15047  pcexp  15777  mulgaddcom  17764  mulginvcom  17765  mulgneg2  17774  mulgass2  18799  cnfldmulg  19982  clmmulg  23110  xrsmulgzz  30002
  Copyright terms: Public domain W3C validator