| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zindd | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| zindd.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
| zindd.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| zindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) |
| zindd.4 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) |
| zindd.5 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
| zindd.6 | ⊢ (𝜁 → 𝜓) |
| zindd.7 | ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) |
| zindd.8 | ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| zindd | ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl 12507 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
| 2 | elznn0nn 12482 | . . . . . . 7 ⊢ (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ) | |
| 5 | 4 | orim2i 910 | . . . . . 6 ⊢ ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
| 7 | zcn 12473 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 8 | 7 | negnegd 11463 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → --𝑦 = 𝑦) |
| 9 | 8 | eleq1d 2816 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ)) |
| 10 | 9 | orbi2d 915 | . . . . 5 ⊢ (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ))) |
| 11 | 6, 10 | mpbid 232 | . . . 4 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ)) |
| 12 | zindd.1 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
| 13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜓))) |
| 14 | zindd.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜒))) |
| 16 | zindd.3 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) | |
| 17 | 16 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝑦 + 1) → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜏))) |
| 18 | zindd.4 | . . . . . . . 8 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) | |
| 19 | 18 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = -𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜃))) |
| 20 | zindd.6 | . . . . . . 7 ⊢ (𝜁 → 𝜓) | |
| 21 | zindd.7 | . . . . . . . . 9 ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) | |
| 22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → (𝜒 → 𝜏))) |
| 23 | 22 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝜁 → 𝜒) → (𝜁 → 𝜏))) |
| 24 | 13, 15, 17, 19, 20, 23 | nn0ind 12568 | . . . . . 6 ⊢ (-𝑦 ∈ ℕ0 → (𝜁 → 𝜃)) |
| 25 | 24 | com12 32 | . . . . 5 ⊢ (𝜁 → (-𝑦 ∈ ℕ0 → 𝜃)) |
| 26 | 13, 15, 17, 15, 20, 23 | nn0ind 12568 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → 𝜒)) |
| 27 | nnnn0 12388 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
| 28 | 26, 27 | syl11 33 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜒)) |
| 29 | zindd.8 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) | |
| 30 | 28, 29 | mpdd 43 | . . . . 5 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜃)) |
| 31 | 25, 30 | jaod 859 | . . . 4 ⊢ (𝜁 → ((-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ) → 𝜃)) |
| 32 | 11, 31 | syl5 34 | . . 3 ⊢ (𝜁 → (𝑦 ∈ ℤ → 𝜃)) |
| 33 | 32 | ralrimiv 3123 | . 2 ⊢ (𝜁 → ∀𝑦 ∈ ℤ 𝜃) |
| 34 | znegcl 12507 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
| 35 | negeq 11352 | . . . . . . . . 9 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
| 36 | zcn 12473 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 37 | 36 | negnegd 11463 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
| 38 | 35, 37 | sylan9eqr 2788 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥) |
| 39 | 38 | eqcomd 2737 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
| 40 | 39, 18 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜃)) |
| 41 | 40 | bicomd 223 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃 ↔ 𝜑)) |
| 42 | 34, 41 | rspcdv 3569 | . . . 4 ⊢ (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃 → 𝜑)) |
| 43 | 42 | com12 32 | . . 3 ⊢ (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑)) |
| 44 | 43 | ralrimiv 3123 | . 2 ⊢ (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑) |
| 45 | zindd.5 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) | |
| 46 | 45 | rspccv 3574 | . 2 ⊢ (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂)) |
| 47 | 33, 44, 46 | 3syl 18 | 1 ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 -cneg 11345 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 |
| This theorem is referenced by: efexp 16010 pcexp 16771 mulgaddcom 19011 mulginvcom 19012 mulgneg2 19021 mulgass2 20228 cnfldmulg 21341 clmmulg 25029 xrsmulgzz 32988 |
| Copyright terms: Public domain | W3C validator |