![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zindd | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
zindd.1 | ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) |
zindd.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
zindd.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) |
zindd.4 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) |
zindd.5 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) |
zindd.6 | ⊢ (𝜁 → 𝜓) |
zindd.7 | ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) |
zindd.8 | ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
zindd | ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 12593 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
2 | elznn0nn 12568 | . . . . . . 7 ⊢ (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) | |
3 | 1, 2 | sylib 217 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ))) |
4 | simpr 485 | . . . . . . 7 ⊢ ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ) | |
5 | 4 | orim2i 909 | . . . . . 6 ⊢ ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ)) |
7 | zcn 12559 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
8 | 7 | negnegd 11558 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → --𝑦 = 𝑦) |
9 | 8 | eleq1d 2818 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ)) |
10 | 9 | orbi2d 914 | . . . . 5 ⊢ (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ))) |
11 | 6, 10 | mpbid 231 | . . . 4 ⊢ (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ)) |
12 | zindd.1 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) | |
13 | 12 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜓))) |
14 | zindd.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜒))) |
16 | zindd.3 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) | |
17 | 16 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = (𝑦 + 1) → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜏))) |
18 | zindd.4 | . . . . . . . 8 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) | |
19 | 18 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = -𝑦 → ((𝜁 → 𝜑) ↔ (𝜁 → 𝜃))) |
20 | zindd.6 | . . . . . . 7 ⊢ (𝜁 → 𝜓) | |
21 | zindd.7 | . . . . . . . . 9 ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) | |
22 | 21 | com12 32 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → (𝜒 → 𝜏))) |
23 | 22 | a2d 29 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → ((𝜁 → 𝜒) → (𝜁 → 𝜏))) |
24 | 13, 15, 17, 19, 20, 23 | nn0ind 12653 | . . . . . 6 ⊢ (-𝑦 ∈ ℕ0 → (𝜁 → 𝜃)) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝜁 → (-𝑦 ∈ ℕ0 → 𝜃)) |
26 | 13, 15, 17, 15, 20, 23 | nn0ind 12653 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ0 → (𝜁 → 𝜒)) |
27 | nnnn0 12475 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0) | |
28 | 26, 27 | syl11 33 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜒)) |
29 | zindd.8 | . . . . . 6 ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) | |
30 | 28, 29 | mpdd 43 | . . . . 5 ⊢ (𝜁 → (𝑦 ∈ ℕ → 𝜃)) |
31 | 25, 30 | jaod 857 | . . . 4 ⊢ (𝜁 → ((-𝑦 ∈ ℕ0 ∨ 𝑦 ∈ ℕ) → 𝜃)) |
32 | 11, 31 | syl5 34 | . . 3 ⊢ (𝜁 → (𝑦 ∈ ℤ → 𝜃)) |
33 | 32 | ralrimiv 3145 | . 2 ⊢ (𝜁 → ∀𝑦 ∈ ℤ 𝜃) |
34 | znegcl 12593 | . . . . 5 ⊢ (𝑥 ∈ ℤ → -𝑥 ∈ ℤ) | |
35 | negeq 11448 | . . . . . . . . 9 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
36 | zcn 12559 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
37 | 36 | negnegd 11558 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
38 | 35, 37 | sylan9eqr 2794 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥) |
39 | 38 | eqcomd 2738 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
40 | 39, 18 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜃)) |
41 | 40 | bicomd 222 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃 ↔ 𝜑)) |
42 | 34, 41 | rspcdv 3604 | . . . 4 ⊢ (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃 → 𝜑)) |
43 | 42 | com12 32 | . . 3 ⊢ (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑)) |
44 | 43 | ralrimiv 3145 | . 2 ⊢ (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑) |
45 | zindd.5 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) | |
46 | 45 | rspccv 3609 | . 2 ⊢ (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂)) |
47 | 33, 44, 46 | 3syl 18 | 1 ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∀wral 3061 (class class class)co 7405 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 -cneg 11441 ℕcn 12208 ℕ0cn0 12468 ℤcz 12554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 |
This theorem is referenced by: efexp 16040 pcexp 16788 mulgaddcom 18972 mulginvcom 18973 mulgneg2 18982 mulgass2 20114 cnfldmulg 20969 clmmulg 24608 xrsmulgzz 32166 |
Copyright terms: Public domain | W3C validator |