MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgldimor Structured version   Visualization version   GIF version

Theorem tgldimor 28511
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.)
Hypotheses
Ref Expression
tgldimor.p 𝑃 = (𝐸𝐹)
tgldimor.a (𝜑𝐴𝑃)
Assertion
Ref Expression
tgldimor (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))

Proof of Theorem tgldimor
StepHypRef Expression
1 tgldimor.p . . . . . 6 𝑃 = (𝐸𝐹)
21fvexi 6919 . . . . 5 𝑃 ∈ V
3 hashv01gt1 14385 . . . . 5 (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
42, 3ax-mp 5 . . . 4 ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))
5 3orass 1089 . . . 4 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))))
64, 5mpbi 230 . . 3 ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
7 1p1e2 12392 . . . . . . 7 (1 + 1) = 2
8 1z 12649 . . . . . . . . 9 1 ∈ ℤ
9 nn0z 12640 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
10 zltp1le 12669 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
118, 9, 10sylancr 587 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
1211biimpac 478 . . . . . . 7 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃))
137, 12eqbrtrrid 5178 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃))
14 2re 12341 . . . . . . . . . 10 2 ∈ ℝ
1514rexri 11320 . . . . . . . . 9 2 ∈ ℝ*
16 pnfge 13173 . . . . . . . . 9 (2 ∈ ℝ* → 2 ≤ +∞)
1715, 16ax-mp 5 . . . . . . . 8 2 ≤ +∞
18 breq2 5146 . . . . . . . 8 ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞))
1917, 18mpbiri 258 . . . . . . 7 ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃))
2019adantl 481 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃))
21 hashnn0pnf 14382 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
222, 21mp1i 13 . . . . . 6 (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
2313, 20, 22mpjaodan 960 . . . . 5 (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃))
2423orim2i 910 . . . 4 (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2524orim2i 910 . . 3 (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
266, 25mp1i 13 . 2 (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
27 tgldimor.a . . 3 (𝜑𝐴𝑃)
28 ne0i 4340 . . 3 (𝐴𝑃𝑃 ≠ ∅)
29 hasheq0 14403 . . . . . 6 (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
302, 29ax-mp 5 . . . . 5 ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)
3130biimpi 216 . . . 4 ((♯‘𝑃) = 0 → 𝑃 = ∅)
3231necon3ai 2964 . . 3 (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0)
33 biorf 936 . . 3 (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3427, 28, 32, 334syl 19 . 2 (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3526, 34mpbird 257 1 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  c0 4332   class class class wbr 5142  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  2c2 12322  0cn0 12528  cz 12615  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-hash 14371
This theorem is referenced by:  tgifscgr  28517  tgcgrxfr  28527  tgbtwnconn3  28586  legtrid  28600  hpgerlem  28774
  Copyright terms: Public domain W3C validator