![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgldimor | Structured version Visualization version GIF version |
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
Ref | Expression |
---|---|
tgldimor.p | ⊢ 𝑃 = (𝐸‘𝐹) |
tgldimor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
tgldimor | ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgldimor.p | . . . . . 6 ⊢ 𝑃 = (𝐸‘𝐹) | |
2 | 1 | fvexi 6934 | . . . . 5 ⊢ 𝑃 ∈ V |
3 | hashv01gt1 14394 | . . . . 5 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) |
5 | 3orass 1090 | . . . 4 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))) | |
6 | 4, 5 | mpbi 230 | . . 3 ⊢ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) |
7 | 1p1e2 12418 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
8 | 1z 12673 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
9 | nn0z 12664 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
10 | zltp1le 12693 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . . . . 8 ⊢ ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) |
12 | 11 | biimpac 478 | . . . . . . 7 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃)) |
13 | 7, 12 | eqbrtrrid 5202 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃)) |
14 | 2re 12367 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
15 | 14 | rexri 11348 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
16 | pnfge 13193 | . . . . . . . . 9 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ≤ +∞ |
18 | breq2 5170 | . . . . . . . 8 ⊢ ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞)) | |
19 | 17, 18 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃)) |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃)) |
21 | hashnn0pnf 14391 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) | |
22 | 2, 21 | mp1i 13 | . . . . . 6 ⊢ (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) |
23 | 13, 20, 22 | mpjaodan 959 | . . . . 5 ⊢ (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃)) |
24 | 23 | orim2i 909 | . . . 4 ⊢ (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
25 | 24 | orim2i 909 | . . 3 ⊢ (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
26 | 6, 25 | mp1i 13 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
27 | tgldimor.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
28 | ne0i 4364 | . . 3 ⊢ (𝐴 ∈ 𝑃 → 𝑃 ≠ ∅) | |
29 | hasheq0 14412 | . . . . . 6 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
30 | 2, 29 | ax-mp 5 | . . . . 5 ⊢ ((♯‘𝑃) = 0 ↔ 𝑃 = ∅) |
31 | 30 | biimpi 216 | . . . 4 ⊢ ((♯‘𝑃) = 0 → 𝑃 = ∅) |
32 | 31 | necon3ai 2971 | . . 3 ⊢ (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0) |
33 | biorf 935 | . . 3 ⊢ (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) | |
34 | 27, 28, 32, 33 | 4syl 19 | . 2 ⊢ (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) |
35 | 26, 34 | mpbird 257 | 1 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: tgifscgr 28534 tgcgrxfr 28544 tgbtwnconn3 28603 legtrid 28617 hpgerlem 28791 |
Copyright terms: Public domain | W3C validator |