![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgldimor | Structured version Visualization version GIF version |
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
Ref | Expression |
---|---|
tgldimor.p | ⊢ 𝑃 = (𝐸‘𝐹) |
tgldimor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
tgldimor | ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgldimor.p | . . . . . 6 ⊢ 𝑃 = (𝐸‘𝐹) | |
2 | 1 | fvexi 6904 | . . . . 5 ⊢ 𝑃 ∈ V |
3 | hashv01gt1 14334 | . . . . 5 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) |
5 | 3orass 1087 | . . . 4 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) |
7 | 1p1e2 12365 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
8 | 1z 12620 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
9 | nn0z 12611 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
10 | zltp1le 12640 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) | |
11 | 8, 9, 10 | sylancr 585 | . . . . . . . 8 ⊢ ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) |
12 | 11 | biimpac 477 | . . . . . . 7 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃)) |
13 | 7, 12 | eqbrtrrid 5177 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃)) |
14 | 2re 12314 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
15 | 14 | rexri 11300 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
16 | pnfge 13140 | . . . . . . . . 9 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ≤ +∞ |
18 | breq2 5145 | . . . . . . . 8 ⊢ ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞)) | |
19 | 17, 18 | mpbiri 257 | . . . . . . 7 ⊢ ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃)) |
20 | 19 | adantl 480 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃)) |
21 | hashnn0pnf 14331 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) | |
22 | 2, 21 | mp1i 13 | . . . . . 6 ⊢ (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) |
23 | 13, 20, 22 | mpjaodan 956 | . . . . 5 ⊢ (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃)) |
24 | 23 | orim2i 908 | . . . 4 ⊢ (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
25 | 24 | orim2i 908 | . . 3 ⊢ (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
26 | 6, 25 | mp1i 13 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
27 | tgldimor.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
28 | ne0i 4328 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → 𝑃 ≠ ∅) | |
29 | hasheq0 14352 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
30 | 2, 29 | ax-mp 5 | . . . . . 6 ⊢ ((♯‘𝑃) = 0 ↔ 𝑃 = ∅) |
31 | 30 | biimpi 215 | . . . . 5 ⊢ ((♯‘𝑃) = 0 → 𝑃 = ∅) |
32 | 31 | necon3ai 2955 | . . . 4 ⊢ (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0) |
33 | 27, 28, 32 | 3syl 18 | . . 3 ⊢ (𝜑 → ¬ (♯‘𝑃) = 0) |
34 | biorf 934 | . . 3 ⊢ (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) |
36 | 26, 35 | mpbird 256 | 1 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ∅c0 4316 class class class wbr 5141 ‘cfv 6541 (class class class)co 7414 0cc0 11136 1c1 11137 + caddc 11139 +∞cpnf 11273 ℝ*cxr 11275 < clt 11276 ≤ cle 11277 2c2 12295 ℕ0cn0 12500 ℤcz 12586 ♯chash 14319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 |
This theorem is referenced by: tgifscgr 28328 tgcgrxfr 28338 tgbtwnconn3 28397 legtrid 28411 hpgerlem 28585 |
Copyright terms: Public domain | W3C validator |