MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgldimor Structured version   Visualization version   GIF version

Theorem tgldimor 28405
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.)
Hypotheses
Ref Expression
tgldimor.p 𝑃 = (𝐸𝐹)
tgldimor.a (𝜑𝐴𝑃)
Assertion
Ref Expression
tgldimor (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))

Proof of Theorem tgldimor
StepHypRef Expression
1 tgldimor.p . . . . . 6 𝑃 = (𝐸𝐹)
21fvexi 6854 . . . . 5 𝑃 ∈ V
3 hashv01gt1 14286 . . . . 5 (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
42, 3ax-mp 5 . . . 4 ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))
5 3orass 1089 . . . 4 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))))
64, 5mpbi 230 . . 3 ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
7 1p1e2 12282 . . . . . . 7 (1 + 1) = 2
8 1z 12539 . . . . . . . . 9 1 ∈ ℤ
9 nn0z 12530 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
10 zltp1le 12559 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
118, 9, 10sylancr 587 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
1211biimpac 478 . . . . . . 7 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃))
137, 12eqbrtrrid 5138 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃))
14 2re 12236 . . . . . . . . . 10 2 ∈ ℝ
1514rexri 11208 . . . . . . . . 9 2 ∈ ℝ*
16 pnfge 13066 . . . . . . . . 9 (2 ∈ ℝ* → 2 ≤ +∞)
1715, 16ax-mp 5 . . . . . . . 8 2 ≤ +∞
18 breq2 5106 . . . . . . . 8 ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞))
1917, 18mpbiri 258 . . . . . . 7 ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃))
2019adantl 481 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃))
21 hashnn0pnf 14283 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
222, 21mp1i 13 . . . . . 6 (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
2313, 20, 22mpjaodan 960 . . . . 5 (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃))
2423orim2i 910 . . . 4 (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2524orim2i 910 . . 3 (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
266, 25mp1i 13 . 2 (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
27 tgldimor.a . . 3 (𝜑𝐴𝑃)
28 ne0i 4300 . . 3 (𝐴𝑃𝑃 ≠ ∅)
29 hasheq0 14304 . . . . . 6 (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
302, 29ax-mp 5 . . . . 5 ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)
3130biimpi 216 . . . 4 ((♯‘𝑃) = 0 → 𝑃 = ∅)
3231necon3ai 2950 . . 3 (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0)
33 biorf 936 . . 3 (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3427, 28, 32, 334syl 19 . 2 (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3526, 34mpbird 257 1 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  2c2 12217  0cn0 12418  cz 12505  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  tgifscgr  28411  tgcgrxfr  28421  tgbtwnconn3  28480  legtrid  28494  hpgerlem  28668
  Copyright terms: Public domain W3C validator