| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgldimor | Structured version Visualization version GIF version | ||
| Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
| Ref | Expression |
|---|---|
| tgldimor.p | ⊢ 𝑃 = (𝐸‘𝐹) |
| tgldimor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgldimor | ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgldimor.p | . . . . . 6 ⊢ 𝑃 = (𝐸‘𝐹) | |
| 2 | 1 | fvexi 6872 | . . . . 5 ⊢ 𝑃 ∈ V |
| 3 | hashv01gt1 14310 | . . . . 5 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) |
| 5 | 3orass 1089 | . . . 4 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) |
| 7 | 1p1e2 12306 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 8 | 1z 12563 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 9 | nn0z 12554 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
| 10 | zltp1le 12583 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) |
| 12 | 11 | biimpac 478 | . . . . . . 7 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃)) |
| 13 | 7, 12 | eqbrtrrid 5143 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃)) |
| 14 | 2re 12260 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 15 | 14 | rexri 11232 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
| 16 | pnfge 13090 | . . . . . . . . 9 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ≤ +∞ |
| 18 | breq2 5111 | . . . . . . . 8 ⊢ ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞)) | |
| 19 | 17, 18 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃)) |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃)) |
| 21 | hashnn0pnf 14307 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) | |
| 22 | 2, 21 | mp1i 13 | . . . . . 6 ⊢ (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) |
| 23 | 13, 20, 22 | mpjaodan 960 | . . . . 5 ⊢ (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃)) |
| 24 | 23 | orim2i 910 | . . . 4 ⊢ (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| 25 | 24 | orim2i 910 | . . 3 ⊢ (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
| 26 | 6, 25 | mp1i 13 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
| 27 | tgldimor.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 28 | ne0i 4304 | . . 3 ⊢ (𝐴 ∈ 𝑃 → 𝑃 ≠ ∅) | |
| 29 | hasheq0 14328 | . . . . . 6 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
| 30 | 2, 29 | ax-mp 5 | . . . . 5 ⊢ ((♯‘𝑃) = 0 ↔ 𝑃 = ∅) |
| 31 | 30 | biimpi 216 | . . . 4 ⊢ ((♯‘𝑃) = 0 → 𝑃 = ∅) |
| 32 | 31 | necon3ai 2950 | . . 3 ⊢ (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0) |
| 33 | biorf 936 | . . 3 ⊢ (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) | |
| 34 | 27, 28, 32, 33 | 4syl 19 | . 2 ⊢ (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) |
| 35 | 26, 34 | mpbird 257 | 1 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 2c2 12241 ℕ0cn0 12442 ℤcz 12529 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: tgifscgr 28435 tgcgrxfr 28445 tgbtwnconn3 28504 legtrid 28518 hpgerlem 28692 |
| Copyright terms: Public domain | W3C validator |