MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgldimor Structured version   Visualization version   GIF version

Theorem tgldimor 28528
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.)
Hypotheses
Ref Expression
tgldimor.p 𝑃 = (𝐸𝐹)
tgldimor.a (𝜑𝐴𝑃)
Assertion
Ref Expression
tgldimor (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))

Proof of Theorem tgldimor
StepHypRef Expression
1 tgldimor.p . . . . . 6 𝑃 = (𝐸𝐹)
21fvexi 6934 . . . . 5 𝑃 ∈ V
3 hashv01gt1 14394 . . . . 5 (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
42, 3ax-mp 5 . . . 4 ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))
5 3orass 1090 . . . 4 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))))
64, 5mpbi 230 . . 3 ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
7 1p1e2 12418 . . . . . . 7 (1 + 1) = 2
8 1z 12673 . . . . . . . . 9 1 ∈ ℤ
9 nn0z 12664 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
10 zltp1le 12693 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
118, 9, 10sylancr 586 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
1211biimpac 478 . . . . . . 7 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃))
137, 12eqbrtrrid 5202 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃))
14 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
1514rexri 11348 . . . . . . . . 9 2 ∈ ℝ*
16 pnfge 13193 . . . . . . . . 9 (2 ∈ ℝ* → 2 ≤ +∞)
1715, 16ax-mp 5 . . . . . . . 8 2 ≤ +∞
18 breq2 5170 . . . . . . . 8 ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞))
1917, 18mpbiri 258 . . . . . . 7 ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃))
2019adantl 481 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃))
21 hashnn0pnf 14391 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
222, 21mp1i 13 . . . . . 6 (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
2313, 20, 22mpjaodan 959 . . . . 5 (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃))
2423orim2i 909 . . . 4 (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2524orim2i 909 . . 3 (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
266, 25mp1i 13 . 2 (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
27 tgldimor.a . . 3 (𝜑𝐴𝑃)
28 ne0i 4364 . . 3 (𝐴𝑃𝑃 ≠ ∅)
29 hasheq0 14412 . . . . . 6 (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
302, 29ax-mp 5 . . . . 5 ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)
3130biimpi 216 . . . 4 ((♯‘𝑃) = 0 → 𝑃 = ∅)
3231necon3ai 2971 . . 3 (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0)
33 biorf 935 . . 3 (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3427, 28, 32, 334syl 19 . 2 (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3526, 34mpbird 257 1 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  2c2 12348  0cn0 12553  cz 12639  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  tgifscgr  28534  tgcgrxfr  28544  tgbtwnconn3  28603  legtrid  28617  hpgerlem  28791
  Copyright terms: Public domain W3C validator