MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgldimor Structured version   Visualization version   GIF version

Theorem tgldimor 26863
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.)
Hypotheses
Ref Expression
tgldimor.p 𝑃 = (𝐸𝐹)
tgldimor.a (𝜑𝐴𝑃)
Assertion
Ref Expression
tgldimor (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))

Proof of Theorem tgldimor
StepHypRef Expression
1 tgldimor.p . . . . . 6 𝑃 = (𝐸𝐹)
21fvexi 6788 . . . . 5 𝑃 ∈ V
3 hashv01gt1 14059 . . . . 5 (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
42, 3ax-mp 5 . . . 4 ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))
5 3orass 1089 . . . 4 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))))
64, 5mpbi 229 . . 3 ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
7 1p1e2 12098 . . . . . . 7 (1 + 1) = 2
8 1z 12350 . . . . . . . . 9 1 ∈ ℤ
9 nn0z 12343 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
10 zltp1le 12370 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
118, 9, 10sylancr 587 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
1211biimpac 479 . . . . . . 7 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃))
137, 12eqbrtrrid 5110 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃))
14 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
1514rexri 11033 . . . . . . . . 9 2 ∈ ℝ*
16 pnfge 12866 . . . . . . . . 9 (2 ∈ ℝ* → 2 ≤ +∞)
1715, 16ax-mp 5 . . . . . . . 8 2 ≤ +∞
18 breq2 5078 . . . . . . . 8 ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞))
1917, 18mpbiri 257 . . . . . . 7 ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃))
2019adantl 482 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃))
21 hashnn0pnf 14056 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
222, 21mp1i 13 . . . . . 6 (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
2313, 20, 22mpjaodan 956 . . . . 5 (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃))
2423orim2i 908 . . . 4 (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2524orim2i 908 . . 3 (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
266, 25mp1i 13 . 2 (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
27 tgldimor.a . . . 4 (𝜑𝐴𝑃)
28 ne0i 4268 . . . 4 (𝐴𝑃𝑃 ≠ ∅)
29 hasheq0 14078 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
302, 29ax-mp 5 . . . . . 6 ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)
3130biimpi 215 . . . . 5 ((♯‘𝑃) = 0 → 𝑃 = ∅)
3231necon3ai 2968 . . . 4 (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0)
3327, 28, 323syl 18 . . 3 (𝜑 → ¬ (♯‘𝑃) = 0)
34 biorf 934 . . 3 (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3533, 34syl 17 . 2 (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3626, 35mpbird 256 1 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  2c2 12028  0cn0 12233  cz 12319  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  tgifscgr  26869  tgcgrxfr  26879  tgbtwnconn3  26938  legtrid  26952  hpgerlem  27126
  Copyright terms: Public domain W3C validator