MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgldimor Structured version   Visualization version   GIF version

Theorem tgldimor 26291
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.)
Hypotheses
Ref Expression
tgldimor.p 𝑃 = (𝐸𝐹)
tgldimor.a (𝜑𝐴𝑃)
Assertion
Ref Expression
tgldimor (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))

Proof of Theorem tgldimor
StepHypRef Expression
1 tgldimor.p . . . . . 6 𝑃 = (𝐸𝐹)
21fvexi 6687 . . . . 5 𝑃 ∈ V
3 hashv01gt1 13708 . . . . 5 (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
42, 3ax-mp 5 . . . 4 ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))
5 3orass 1086 . . . 4 (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))))
64, 5mpbi 232 . . 3 ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))
7 1p1e2 11765 . . . . . . 7 (1 + 1) = 2
8 1z 12015 . . . . . . . . 9 1 ∈ ℤ
9 nn0z 12008 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
10 zltp1le 12035 . . . . . . . . 9 ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
118, 9, 10sylancr 589 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃)))
1211biimpac 481 . . . . . . 7 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃))
137, 12eqbrtrrid 5105 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃))
14 2re 11714 . . . . . . . . . 10 2 ∈ ℝ
1514rexri 10702 . . . . . . . . 9 2 ∈ ℝ*
16 pnfge 12528 . . . . . . . . 9 (2 ∈ ℝ* → 2 ≤ +∞)
1715, 16ax-mp 5 . . . . . . . 8 2 ≤ +∞
18 breq2 5073 . . . . . . . 8 ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞))
1917, 18mpbiri 260 . . . . . . 7 ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃))
2019adantl 484 . . . . . 6 ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃))
21 hashnn0pnf 13705 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
222, 21mp1i 13 . . . . . 6 (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞))
2313, 20, 22mpjaodan 955 . . . . 5 (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃))
2423orim2i 907 . . . 4 (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
2524orim2i 907 . . 3 (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
266, 25mp1i 13 . 2 (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))
27 tgldimor.a . . . 4 (𝜑𝐴𝑃)
28 ne0i 4303 . . . 4 (𝐴𝑃𝑃 ≠ ∅)
29 hasheq0 13727 . . . . . . 7 (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅))
302, 29ax-mp 5 . . . . . 6 ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)
3130biimpi 218 . . . . 5 ((♯‘𝑃) = 0 → 𝑃 = ∅)
3231necon3ai 3044 . . . 4 (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0)
3327, 28, 323syl 18 . . 3 (𝜑 → ¬ (♯‘𝑃) = 0)
34 biorf 933 . . 3 (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3533, 34syl 17 . 2 (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))))
3626, 35mpbird 259 1 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  c0 4294   class class class wbr 5069  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543  +∞cpnf 10675  *cxr 10677   < clt 10678  cle 10679  2c2 11695  0cn0 11900  cz 11984  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  tgifscgr  26297  tgcgrxfr  26307  tgbtwnconn3  26366  legtrid  26380  hpgerlem  26554
  Copyright terms: Public domain W3C validator