| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgldimor | Structured version Visualization version GIF version | ||
| Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
| Ref | Expression |
|---|---|
| tgldimor.p | ⊢ 𝑃 = (𝐸‘𝐹) |
| tgldimor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgldimor | ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgldimor.p | . . . . . 6 ⊢ 𝑃 = (𝐸‘𝐹) | |
| 2 | 1 | fvexi 6840 | . . . . 5 ⊢ 𝑃 ∈ V |
| 3 | hashv01gt1 14270 | . . . . 5 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) |
| 5 | 3orass 1089 | . . . 4 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) |
| 7 | 1p1e2 12266 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 8 | 1z 12523 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 9 | nn0z 12514 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
| 10 | zltp1le 12543 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) |
| 12 | 11 | biimpac 478 | . . . . . . 7 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃)) |
| 13 | 7, 12 | eqbrtrrid 5131 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃)) |
| 14 | 2re 12220 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 15 | 14 | rexri 11192 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
| 16 | pnfge 13050 | . . . . . . . . 9 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
| 17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ≤ +∞ |
| 18 | breq2 5099 | . . . . . . . 8 ⊢ ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞)) | |
| 19 | 17, 18 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃)) |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃)) |
| 21 | hashnn0pnf 14267 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) | |
| 22 | 2, 21 | mp1i 13 | . . . . . 6 ⊢ (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) |
| 23 | 13, 20, 22 | mpjaodan 960 | . . . . 5 ⊢ (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃)) |
| 24 | 23 | orim2i 910 | . . . 4 ⊢ (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| 25 | 24 | orim2i 910 | . . 3 ⊢ (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
| 26 | 6, 25 | mp1i 13 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
| 27 | tgldimor.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 28 | ne0i 4294 | . . 3 ⊢ (𝐴 ∈ 𝑃 → 𝑃 ≠ ∅) | |
| 29 | hasheq0 14288 | . . . . . 6 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
| 30 | 2, 29 | ax-mp 5 | . . . . 5 ⊢ ((♯‘𝑃) = 0 ↔ 𝑃 = ∅) |
| 31 | 30 | biimpi 216 | . . . 4 ⊢ ((♯‘𝑃) = 0 → 𝑃 = ∅) |
| 32 | 31 | necon3ai 2950 | . . 3 ⊢ (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0) |
| 33 | biorf 936 | . . 3 ⊢ (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) | |
| 34 | 27, 28, 32, 33 | 4syl 19 | . 2 ⊢ (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) |
| 35 | 26, 34 | mpbird 257 | 1 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 2c2 12201 ℕ0cn0 12402 ℤcz 12489 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: tgifscgr 28471 tgcgrxfr 28481 tgbtwnconn3 28540 legtrid 28554 hpgerlem 28728 |
| Copyright terms: Public domain | W3C validator |