![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgldimor | Structured version Visualization version GIF version |
Description: Excluded-middle like statement allowing to treat dimension zero as a special case. (Contributed by Thierry Arnoux, 11-Apr-2019.) |
Ref | Expression |
---|---|
tgldimor.p | ⊢ 𝑃 = (𝐸‘𝐹) |
tgldimor.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
Ref | Expression |
---|---|
tgldimor | ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgldimor.p | . . . . . 6 ⊢ 𝑃 = (𝐸‘𝐹) | |
2 | 1 | fvexi 6899 | . . . . 5 ⊢ 𝑃 ∈ V |
3 | hashv01gt1 14310 | . . . . 5 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) |
5 | 3orass 1087 | . . . 4 ⊢ (((♯‘𝑃) = 0 ∨ (♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)))) | |
6 | 4, 5 | mpbi 229 | . . 3 ⊢ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) |
7 | 1p1e2 12341 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
8 | 1z 12596 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
9 | nn0z 12587 | . . . . . . . . 9 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
10 | zltp1le 12616 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ (♯‘𝑃) ∈ ℤ) → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . . . . 8 ⊢ ((♯‘𝑃) ∈ ℕ0 → (1 < (♯‘𝑃) ↔ (1 + 1) ≤ (♯‘𝑃))) |
12 | 11 | biimpac 478 | . . . . . . 7 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → (1 + 1) ≤ (♯‘𝑃)) |
13 | 7, 12 | eqbrtrrid 5177 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) ∈ ℕ0) → 2 ≤ (♯‘𝑃)) |
14 | 2re 12290 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
15 | 14 | rexri 11276 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
16 | pnfge 13116 | . . . . . . . . 9 ⊢ (2 ∈ ℝ* → 2 ≤ +∞) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ 2 ≤ +∞ |
18 | breq2 5145 | . . . . . . . 8 ⊢ ((♯‘𝑃) = +∞ → (2 ≤ (♯‘𝑃) ↔ 2 ≤ +∞)) | |
19 | 17, 18 | mpbiri 258 | . . . . . . 7 ⊢ ((♯‘𝑃) = +∞ → 2 ≤ (♯‘𝑃)) |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((1 < (♯‘𝑃) ∧ (♯‘𝑃) = +∞) → 2 ≤ (♯‘𝑃)) |
21 | hashnn0pnf 14307 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) | |
22 | 2, 21 | mp1i 13 | . . . . . 6 ⊢ (1 < (♯‘𝑃) → ((♯‘𝑃) ∈ ℕ0 ∨ (♯‘𝑃) = +∞)) |
23 | 13, 20, 22 | mpjaodan 955 | . . . . 5 ⊢ (1 < (♯‘𝑃) → 2 ≤ (♯‘𝑃)) |
24 | 23 | orim2i 907 | . . . 4 ⊢ (((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃)) → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
25 | 24 | orim2i 907 | . . 3 ⊢ (((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 1 < (♯‘𝑃))) → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
26 | 6, 25 | mp1i 13 | . 2 ⊢ (𝜑 → ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))) |
27 | tgldimor.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
28 | ne0i 4329 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → 𝑃 ≠ ∅) | |
29 | hasheq0 14328 | . . . . . . 7 ⊢ (𝑃 ∈ V → ((♯‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
30 | 2, 29 | ax-mp 5 | . . . . . 6 ⊢ ((♯‘𝑃) = 0 ↔ 𝑃 = ∅) |
31 | 30 | biimpi 215 | . . . . 5 ⊢ ((♯‘𝑃) = 0 → 𝑃 = ∅) |
32 | 31 | necon3ai 2959 | . . . 4 ⊢ (𝑃 ≠ ∅ → ¬ (♯‘𝑃) = 0) |
33 | 27, 28, 32 | 3syl 18 | . . 3 ⊢ (𝜑 → ¬ (♯‘𝑃) = 0) |
34 | biorf 933 | . . 3 ⊢ (¬ (♯‘𝑃) = 0 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)) ↔ ((♯‘𝑃) = 0 ∨ ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))))) |
36 | 26, 35 | mpbird 257 | 1 ⊢ (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∅c0 4317 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 +∞cpnf 11249 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 2c2 12271 ℕ0cn0 12476 ℤcz 12562 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: tgifscgr 28267 tgcgrxfr 28277 tgbtwnconn3 28336 legtrid 28350 hpgerlem 28524 |
Copyright terms: Public domain | W3C validator |