HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredi Structured version   Visualization version   GIF version

Theorem chirredi 31685
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1 𝐴C
chirred.2 (𝑥C𝐴 𝐶 𝑥)
Assertion
Ref Expression
chirredi (𝐴 = 0𝐴 = ℋ)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chirredi
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 0 = 0
2 ioran 982 . . . . 5 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
3 df-ne 2941 . . . . . 6 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
4 df-ne 2941 . . . . . 6 ((⊥‘𝐴) ≠ 0 ↔ ¬ (⊥‘𝐴) = 0)
53, 4anbi12i 627 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
62, 5bitr4i 277 . . . 4 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0))
7 chirred.1 . . . . . . . 8 𝐴C
87hatomici 31650 . . . . . . 7 (𝐴 ≠ 0 → ∃𝑝 ∈ HAtoms 𝑝𝐴)
97choccli 30598 . . . . . . . 8 (⊥‘𝐴) ∈ C
109hatomici 31650 . . . . . . 7 ((⊥‘𝐴) ≠ 0 → ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴))
118, 10anim12i 613 . . . . . 6 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
12 reeanv 3226 . . . . . 6 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) ↔ (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
1311, 12sylibr 233 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)))
14 simpll 765 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝 ∈ HAtoms)
15 simprl 769 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ∈ HAtoms)
16 atelch 31635 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
17 chsscon3 30791 . . . . . . . . . . . . . . . 16 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1816, 7, 17sylancl 586 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1918biimpa 477 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
20 sstr 3990 . . . . . . . . . . . . . 14 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
2119, 20sylan2 593 . . . . . . . . . . . . 13 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝 ∈ HAtoms ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
2221ancoms 459 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
23 atne0 31636 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → 𝑝 ≠ 0)
2423adantr 481 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 ≠ 0)
25 sseq1 4007 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑞 → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑞 ⊆ (⊥‘𝑝)))
2625bicomd 222 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 ⊆ (⊥‘𝑝)))
27 chssoc 30787 . . . . . . . . . . . . . . . . . . . 20 (𝑝C → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2816, 27syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ HAtoms → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2926, 28sylan9bbr 511 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
3029biimpa 477 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 = 0)
3130an32s 650 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) ∧ 𝑝 = 𝑞) → 𝑝 = 0)
3231ex 413 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 = 𝑞𝑝 = 0))
3332necon3d 2961 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 ≠ 0𝑝𝑞))
3424, 33mpd 15 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3534adantlr 713 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3622, 35syldan 591 . . . . . . . . . . 11 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑝𝑞)
3736adantrl 714 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝𝑞)
38 superpos 31645 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝𝑞) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
3914, 15, 37, 38syl3anc 1371 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
40 df-3an 1089 . . . . . . . . . . . 12 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ ((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
41 neanior 3035 . . . . . . . . . . . . 13 ((𝑟𝑝𝑟𝑞) ↔ ¬ (𝑟 = 𝑝𝑟 = 𝑞))
4241anbi1i 624 . . . . . . . . . . . 12 (((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
4340, 42bitri 274 . . . . . . . . . . 11 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
44 chirred.2 . . . . . . . . . . . . . . . . 17 (𝑥C𝐴 𝐶 𝑥)
457, 44chirredlem4 31684 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 = 𝑝𝑟 = 𝑞))
4645anassrs 468 . . . . . . . . . . . . . . 15 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 = 𝑝𝑟 = 𝑞))
4746pm2.24d 151 . . . . . . . . . . . . . 14 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0))
4847ex 413 . . . . . . . . . . . . 13 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0)))
4948com23 86 . . . . . . . . . . . 12 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → (𝑟 ⊆ (𝑝 𝑞) → ¬ 0 = 0)))
5049impd 411 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5143, 50biimtrid 241 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5251rexlimdva 3155 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → (∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5339, 52mpd 15 . . . . . . . 8 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5453an4s 658 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5554ex 413 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0))
5655rexlimivv 3199 . . . . 5 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0)
5713, 56syl 17 . . . 4 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ¬ 0 = 0)
586, 57sylbi 216 . . 3 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) → ¬ 0 = 0)
591, 58mt4 116 . 2 (𝐴 = 0 ∨ (⊥‘𝐴) = 0)
60 fveq2 6891 . . . 4 ((⊥‘𝐴) = 0 → (⊥‘(⊥‘𝐴)) = (⊥‘0))
617ococi 30696 . . . 4 (⊥‘(⊥‘𝐴)) = 𝐴
62 choc0 30617 . . . 4 (⊥‘0) = ℋ
6360, 61, 623eqtr3g 2795 . . 3 ((⊥‘𝐴) = 0𝐴 = ℋ)
6463orim2i 909 . 2 ((𝐴 = 0 ∨ (⊥‘𝐴) = 0) → (𝐴 = 0𝐴 = ℋ))
6559, 64ax-mp 5 1 (𝐴 = 0𝐴 = ℋ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070  wss 3948   class class class wbr 5148  cfv 6543  (class class class)co 7411  chba 30210   C cch 30220  cort 30221   chj 30224  0c0h 30226   𝐶 ccm 30227  HAtomscat 30256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30290  ax-hfvadd 30291  ax-hvcom 30292  ax-hvass 30293  ax-hv0cl 30294  ax-hvaddid 30295  ax-hfvmul 30296  ax-hvmulid 30297  ax-hvmulass 30298  ax-hvdistr1 30299  ax-hvdistr2 30300  ax-hvmul0 30301  ax-hfi 30370  ax-his1 30373  ax-his2 30374  ax-his3 30375  ax-his4 30376  ax-hcompl 30493
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-rlim 15435  df-sum 15635  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-hom 17223  df-cco 17224  df-rest 17370  df-topn 17371  df-0g 17389  df-gsum 17390  df-topgen 17391  df-pt 17392  df-prds 17395  df-xrs 17450  df-qtop 17455  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-fbas 20947  df-fg 20948  df-cnfld 20951  df-top 22403  df-topon 22420  df-topsp 22442  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-nei 22609  df-cn 22738  df-cnp 22739  df-lm 22740  df-haus 22826  df-tx 23073  df-hmeo 23266  df-fil 23357  df-fm 23449  df-flim 23450  df-flf 23451  df-xms 23833  df-ms 23834  df-tms 23835  df-cfil 24779  df-cau 24780  df-cmet 24781  df-grpo 29784  df-gid 29785  df-ginv 29786  df-gdiv 29787  df-ablo 29836  df-vc 29850  df-nv 29883  df-va 29886  df-ba 29887  df-sm 29888  df-0v 29889  df-vs 29890  df-nmcv 29891  df-ims 29892  df-dip 29992  df-ssp 30013  df-ph 30104  df-cbn 30154  df-hnorm 30259  df-hba 30260  df-hvsub 30262  df-hlim 30263  df-hcau 30264  df-sh 30498  df-ch 30512  df-oc 30543  df-ch0 30544  df-shs 30599  df-span 30600  df-chj 30601  df-chsup 30602  df-pjh 30686  df-cm 30874  df-cv 31570  df-at 31629
This theorem is referenced by:  chirred  31686
  Copyright terms: Public domain W3C validator