HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredi Structured version   Visualization version   GIF version

Theorem chirredi 32413
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1 𝐴C
chirred.2 (𝑥C𝐴 𝐶 𝑥)
Assertion
Ref Expression
chirredi (𝐴 = 0𝐴 = ℋ)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chirredi
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 0 = 0
2 ioran 986 . . . . 5 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
3 df-ne 2941 . . . . . 6 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
4 df-ne 2941 . . . . . 6 ((⊥‘𝐴) ≠ 0 ↔ ¬ (⊥‘𝐴) = 0)
53, 4anbi12i 628 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
62, 5bitr4i 278 . . . 4 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0))
7 chirred.1 . . . . . . . 8 𝐴C
87hatomici 32378 . . . . . . 7 (𝐴 ≠ 0 → ∃𝑝 ∈ HAtoms 𝑝𝐴)
97choccli 31326 . . . . . . . 8 (⊥‘𝐴) ∈ C
109hatomici 32378 . . . . . . 7 ((⊥‘𝐴) ≠ 0 → ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴))
118, 10anim12i 613 . . . . . 6 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
12 reeanv 3229 . . . . . 6 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) ↔ (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
1311, 12sylibr 234 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)))
14 simpll 767 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝 ∈ HAtoms)
15 simprl 771 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ∈ HAtoms)
16 atelch 32363 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
17 chsscon3 31519 . . . . . . . . . . . . . . . 16 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1816, 7, 17sylancl 586 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1918biimpa 476 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
20 sstr 3992 . . . . . . . . . . . . . 14 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
2119, 20sylan2 593 . . . . . . . . . . . . 13 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝 ∈ HAtoms ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
2221ancoms 458 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
23 atne0 32364 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → 𝑝 ≠ 0)
2423adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 ≠ 0)
25 sseq1 4009 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑞 → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑞 ⊆ (⊥‘𝑝)))
2625bicomd 223 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 ⊆ (⊥‘𝑝)))
27 chssoc 31515 . . . . . . . . . . . . . . . . . . . 20 (𝑝C → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2816, 27syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ HAtoms → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2926, 28sylan9bbr 510 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
3029biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 = 0)
3130an32s 652 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) ∧ 𝑝 = 𝑞) → 𝑝 = 0)
3231ex 412 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 = 𝑞𝑝 = 0))
3332necon3d 2961 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 ≠ 0𝑝𝑞))
3424, 33mpd 15 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3534adantlr 715 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3622, 35syldan 591 . . . . . . . . . . 11 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑝𝑞)
3736adantrl 716 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝𝑞)
38 superpos 32373 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝𝑞) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
3914, 15, 37, 38syl3anc 1373 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
40 df-3an 1089 . . . . . . . . . . . 12 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ ((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
41 neanior 3035 . . . . . . . . . . . . 13 ((𝑟𝑝𝑟𝑞) ↔ ¬ (𝑟 = 𝑝𝑟 = 𝑞))
4241anbi1i 624 . . . . . . . . . . . 12 (((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
4340, 42bitri 275 . . . . . . . . . . 11 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
44 chirred.2 . . . . . . . . . . . . . . . . 17 (𝑥C𝐴 𝐶 𝑥)
457, 44chirredlem4 32412 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 = 𝑝𝑟 = 𝑞))
4645anassrs 467 . . . . . . . . . . . . . . 15 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 = 𝑝𝑟 = 𝑞))
4746pm2.24d 151 . . . . . . . . . . . . . 14 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0))
4847ex 412 . . . . . . . . . . . . 13 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0)))
4948com23 86 . . . . . . . . . . . 12 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → (𝑟 ⊆ (𝑝 𝑞) → ¬ 0 = 0)))
5049impd 410 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5143, 50biimtrid 242 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5251rexlimdva 3155 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → (∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5339, 52mpd 15 . . . . . . . 8 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5453an4s 660 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5554ex 412 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0))
5655rexlimivv 3201 . . . . 5 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0)
5713, 56syl 17 . . . 4 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ¬ 0 = 0)
586, 57sylbi 217 . . 3 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) → ¬ 0 = 0)
591, 58mt4 116 . 2 (𝐴 = 0 ∨ (⊥‘𝐴) = 0)
60 fveq2 6906 . . . 4 ((⊥‘𝐴) = 0 → (⊥‘(⊥‘𝐴)) = (⊥‘0))
617ococi 31424 . . . 4 (⊥‘(⊥‘𝐴)) = 𝐴
62 choc0 31345 . . . 4 (⊥‘0) = ℋ
6360, 61, 623eqtr3g 2800 . . 3 ((⊥‘𝐴) = 0𝐴 = ℋ)
6463orim2i 911 . 2 ((𝐴 = 0 ∨ (⊥‘𝐴) = 0) → (𝐴 = 0𝐴 = ℋ))
6559, 64ax-mp 5 1 (𝐴 = 0𝐴 = ℋ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  chba 30938   C cch 30948  cort 30949   chj 30952  0c0h 30954   𝐶 ccm 30955  HAtomscat 30984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272  df-shs 31327  df-span 31328  df-chj 31329  df-chsup 31330  df-pjh 31414  df-cm 31602  df-cv 32298  df-at 32357
This theorem is referenced by:  chirred  32414
  Copyright terms: Public domain W3C validator