HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredi Structured version   Visualization version   GIF version

Theorem chirredi 32296
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1 𝐴C
chirred.2 (𝑥C𝐴 𝐶 𝑥)
Assertion
Ref Expression
chirredi (𝐴 = 0𝐴 = ℋ)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chirredi
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 0 = 0
2 ioran 985 . . . . 5 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
3 df-ne 2926 . . . . . 6 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
4 df-ne 2926 . . . . . 6 ((⊥‘𝐴) ≠ 0 ↔ ¬ (⊥‘𝐴) = 0)
53, 4anbi12i 628 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
62, 5bitr4i 278 . . . 4 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0))
7 chirred.1 . . . . . . . 8 𝐴C
87hatomici 32261 . . . . . . 7 (𝐴 ≠ 0 → ∃𝑝 ∈ HAtoms 𝑝𝐴)
97choccli 31209 . . . . . . . 8 (⊥‘𝐴) ∈ C
109hatomici 32261 . . . . . . 7 ((⊥‘𝐴) ≠ 0 → ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴))
118, 10anim12i 613 . . . . . 6 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
12 reeanv 3207 . . . . . 6 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) ↔ (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
1311, 12sylibr 234 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)))
14 simpll 766 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝 ∈ HAtoms)
15 simprl 770 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ∈ HAtoms)
16 atelch 32246 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
17 chsscon3 31402 . . . . . . . . . . . . . . . 16 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1816, 7, 17sylancl 586 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1918biimpa 476 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
20 sstr 3952 . . . . . . . . . . . . . 14 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
2119, 20sylan2 593 . . . . . . . . . . . . 13 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝 ∈ HAtoms ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
2221ancoms 458 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
23 atne0 32247 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → 𝑝 ≠ 0)
2423adantr 480 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 ≠ 0)
25 sseq1 3969 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑞 → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑞 ⊆ (⊥‘𝑝)))
2625bicomd 223 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 ⊆ (⊥‘𝑝)))
27 chssoc 31398 . . . . . . . . . . . . . . . . . . . 20 (𝑝C → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2816, 27syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ HAtoms → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2926, 28sylan9bbr 510 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
3029biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 = 0)
3130an32s 652 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) ∧ 𝑝 = 𝑞) → 𝑝 = 0)
3231ex 412 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 = 𝑞𝑝 = 0))
3332necon3d 2946 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 ≠ 0𝑝𝑞))
3424, 33mpd 15 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3534adantlr 715 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3622, 35syldan 591 . . . . . . . . . . 11 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑝𝑞)
3736adantrl 716 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝𝑞)
38 superpos 32256 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝𝑞) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
3914, 15, 37, 38syl3anc 1373 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
40 df-3an 1088 . . . . . . . . . . . 12 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ ((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
41 neanior 3018 . . . . . . . . . . . . 13 ((𝑟𝑝𝑟𝑞) ↔ ¬ (𝑟 = 𝑝𝑟 = 𝑞))
4241anbi1i 624 . . . . . . . . . . . 12 (((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
4340, 42bitri 275 . . . . . . . . . . 11 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
44 chirred.2 . . . . . . . . . . . . . . . . 17 (𝑥C𝐴 𝐶 𝑥)
457, 44chirredlem4 32295 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 = 𝑝𝑟 = 𝑞))
4645anassrs 467 . . . . . . . . . . . . . . 15 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 = 𝑝𝑟 = 𝑞))
4746pm2.24d 151 . . . . . . . . . . . . . 14 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0))
4847ex 412 . . . . . . . . . . . . 13 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0)))
4948com23 86 . . . . . . . . . . . 12 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → (𝑟 ⊆ (𝑝 𝑞) → ¬ 0 = 0)))
5049impd 410 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5143, 50biimtrid 242 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5251rexlimdva 3134 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → (∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5339, 52mpd 15 . . . . . . . 8 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5453an4s 660 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5554ex 412 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0))
5655rexlimivv 3177 . . . . 5 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0)
5713, 56syl 17 . . . 4 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ¬ 0 = 0)
586, 57sylbi 217 . . 3 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) → ¬ 0 = 0)
591, 58mt4 116 . 2 (𝐴 = 0 ∨ (⊥‘𝐴) = 0)
60 fveq2 6840 . . . 4 ((⊥‘𝐴) = 0 → (⊥‘(⊥‘𝐴)) = (⊥‘0))
617ococi 31307 . . . 4 (⊥‘(⊥‘𝐴)) = 𝐴
62 choc0 31228 . . . 4 (⊥‘0) = ℋ
6360, 61, 623eqtr3g 2787 . . 3 ((⊥‘𝐴) = 0𝐴 = ℋ)
6463orim2i 910 . 2 ((𝐴 = 0 ∨ (⊥‘𝐴) = 0) → (𝐴 = 0𝐴 = ℋ))
6559, 64ax-mp 5 1 (𝐴 = 0𝐴 = ℋ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  chba 30821   C cch 30831  cort 30832   chj 30835  0c0h 30837   𝐶 ccm 30838  HAtomscat 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30901  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr1 30910  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987  ax-hcompl 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-cn 23090  df-cnp 23091  df-lm 23092  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cfil 25131  df-cau 25132  df-cmet 25133  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-vs 30501  df-nmcv 30502  df-ims 30503  df-dip 30603  df-ssp 30624  df-ph 30715  df-cbn 30765  df-hnorm 30870  df-hba 30871  df-hvsub 30873  df-hlim 30874  df-hcau 30875  df-sh 31109  df-ch 31123  df-oc 31154  df-ch0 31155  df-shs 31210  df-span 31211  df-chj 31212  df-chsup 31213  df-pjh 31297  df-cm 31485  df-cv 32181  df-at 32240
This theorem is referenced by:  chirred  32297
  Copyright terms: Public domain W3C validator