Step | Hyp | Ref
| Expression |
1 | | limccnp.j |
. . . . . . 7
⊢ 𝐽 = (𝐾 ↾t 𝐷) |
2 | | limccnp.k |
. . . . . . . . 9
⊢ 𝐾 =
(TopOpen‘ℂfld) |
3 | 2 | cnfldtopon 23852 |
. . . . . . . 8
⊢ 𝐾 ∈
(TopOn‘ℂ) |
4 | | limccnp.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ⊆ ℂ) |
5 | | resttopon 22220 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝐷 ⊆ ℂ)
→ (𝐾
↾t 𝐷)
∈ (TopOn‘𝐷)) |
6 | 3, 4, 5 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ↾t 𝐷) ∈ (TopOn‘𝐷)) |
7 | 1, 6 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝐷)) |
8 | 3 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℂ)) |
9 | | limccnp.b |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) |
10 | | cnpf2 22309 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ) |
11 | 7, 8, 9, 10 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐷⟶ℂ) |
12 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
13 | 12 | cnprcl 22304 |
. . . . . . . . 9
⊢ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) → 𝐶 ∈ ∪ 𝐽) |
14 | 9, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ∪ 𝐽) |
15 | | toponuni 21971 |
. . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝐷) → 𝐷 = ∪ 𝐽) |
16 | 7, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 = ∪ 𝐽) |
17 | 14, 16 | eleqtrrd 2842 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝐷) |
18 | 17 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶 ∈ 𝐷) |
19 | | limccnp.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐷) |
20 | 19 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝐹:𝐴⟶𝐷) |
21 | | elun 4079 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐵})) |
22 | | elsni 4575 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝐵} → 𝑥 = 𝐵) |
23 | 22 | orim2i 907 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ {𝐵}) → (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵)) |
24 | 21, 23 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵)) |
25 | 24 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 ∈ 𝐴 ∨ 𝑥 = 𝐵)) |
26 | 25 | orcomd 867 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 = 𝐵 ∨ 𝑥 ∈ 𝐴)) |
27 | 26 | orcanai 999 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ 𝐴) |
28 | 20, 27 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → (𝐹‘𝑥) ∈ 𝐷) |
29 | 18, 28 | ifclda 4491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)) ∈ 𝐷) |
30 | 11, 29 | cofmpt 6986 |
. . . 4
⊢ (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))))) |
31 | | fvco3 6849 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐷 ∧ 𝑥 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
32 | 20, 27, 31 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
33 | 32 | ifeq2da 4488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥)) = if(𝑥 = 𝐵, (𝐺‘𝐶), (𝐺‘(𝐹‘𝑥)))) |
34 | | fvif 6772 |
. . . . . 6
⊢ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) = if(𝑥 = 𝐵, (𝐺‘𝐶), (𝐺‘(𝐹‘𝑥))) |
35 | 33, 34 | eqtr4di 2797 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥)) = (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))) |
36 | 35 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))))) |
37 | 30, 36 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥)))) |
38 | | limccnp.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐵)) |
39 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐾 ↾t (𝐴 ∪ {𝐵})) = (𝐾 ↾t (𝐴 ∪ {𝐵})) |
40 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) |
41 | 19, 4 | fssd 6602 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
42 | 19 | fdmd 6595 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = 𝐴) |
43 | | limcrcl 24943 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
44 | 38, 43 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
45 | 44 | simp2d 1141 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
46 | 42, 45 | eqsstrrd 3956 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
47 | 44 | simp3d 1142 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℂ) |
48 | 39, 2, 40, 41, 46, 47 | ellimc 24942 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
49 | 38, 48 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
50 | 2 | cnfldtop 23853 |
. . . . . . . 8
⊢ 𝐾 ∈ Top |
51 | 50 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Top) |
52 | 29 | fmpttd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))):(𝐴 ∪ {𝐵})⟶𝐷) |
53 | 47 | snssd 4739 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐵} ⊆ ℂ) |
54 | 46, 53 | unssd 4116 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ) |
55 | | resttopon 22220 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) →
(𝐾 ↾t
(𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
56 | 3, 54, 55 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵}))) |
57 | | toponuni 21971 |
. . . . . . . . . 10
⊢ ((𝐾 ↾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = ∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
58 | 56, 57 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∪ {𝐵}) = ∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))) |
59 | 58 | feq2d 6570 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))):(𝐴 ∪ {𝐵})⟶𝐷 ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))):∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))⟶𝐷)) |
60 | 52, 59 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))):∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))⟶𝐷) |
61 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ (𝐾
↾t (𝐴
∪ {𝐵})) = ∪ (𝐾
↾t (𝐴
∪ {𝐵})) |
62 | 3 | toponunii 21973 |
. . . . . . . 8
⊢ ℂ =
∪ 𝐾 |
63 | 61, 62 | cnprest2 22349 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))):∪ (𝐾 ↾t (𝐴 ∪ {𝐵}))⟶𝐷 ∧ 𝐷 ⊆ ℂ) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ↾t 𝐷))‘𝐵))) |
64 | 51, 60, 4, 63 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ↾t 𝐷))‘𝐵))) |
65 | 49, 64 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ↾t 𝐷))‘𝐵)) |
66 | 1 | oveq2i 7266 |
. . . . . 6
⊢ ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ↾t 𝐷)) |
67 | 66 | fveq1i 6757 |
. . . . 5
⊢ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP (𝐾 ↾t 𝐷))‘𝐵) |
68 | 65, 67 | eleqtrrdi 2850 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵)) |
69 | | iftrue 4462 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)) = 𝐶) |
70 | | ssun2 4103 |
. . . . . . . 8
⊢ {𝐵} ⊆ (𝐴 ∪ {𝐵}) |
71 | | snssg 4715 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
72 | 47, 71 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵}))) |
73 | 70, 72 | mpbiri 257 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴 ∪ {𝐵})) |
74 | 40, 69, 73, 38 | fvmptd3 6880 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))‘𝐵) = 𝐶) |
75 | 74 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))‘𝐵)) = ((𝐽 CnP 𝐾)‘𝐶)) |
76 | 9, 75 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))‘𝐵))) |
77 | | cnpco 22326 |
. . . 4
⊢ (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))‘𝐵))) → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
78 | 68, 76, 77 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹‘𝑥)))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
79 | 37, 78 | eqeltrrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)) |
80 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥))) |
81 | | fco 6608 |
. . . 4
⊢ ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴⟶𝐷) → (𝐺 ∘ 𝐹):𝐴⟶ℂ) |
82 | 11, 19, 81 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐺 ∘ 𝐹):𝐴⟶ℂ) |
83 | 39, 2, 80, 82, 46, 47 | ellimc 24942 |
. 2
⊢ (𝜑 → ((𝐺‘𝐶) ∈ ((𝐺 ∘ 𝐹) limℂ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺‘𝐶), ((𝐺 ∘ 𝐹)‘𝑥))) ∈ (((𝐾 ↾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
84 | 79, 83 | mpbird 256 |
1
⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝐺 ∘ 𝐹) limℂ 𝐵)) |