MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp Structured version   Visualization version   GIF version

Theorem limccnp 24788
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnp.k 𝐾 = (TopOpen‘ℂfld)
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnp (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . . . 7 𝐽 = (𝐾t 𝐷)
2 limccnp.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23680 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . . . 8 (𝜑𝐷 ⊆ ℂ)
5 resttopon 22058 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 590 . . . . . . 7 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2842 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 22147 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1373 . . . . 5 (𝜑𝐺:𝐷⟶ℂ)
12 eqid 2737 . . . . . . . . . 10 𝐽 = 𝐽
1312cnprcl 22142 . . . . . . . . 9 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) → 𝐶 𝐽)
149, 13syl 17 . . . . . . . 8 (𝜑𝐶 𝐽)
15 toponuni 21811 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝐷) → 𝐷 = 𝐽)
167, 15syl 17 . . . . . . . 8 (𝜑𝐷 = 𝐽)
1714, 16eleqtrrd 2841 . . . . . . 7 (𝜑𝐶𝐷)
1817ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝐷)
19 limccnp.f . . . . . . . 8 (𝜑𝐹:𝐴𝐷)
2019ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝐹:𝐴𝐷)
21 elun 4063 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
22 elsni 4558 . . . . . . . . . . . 12 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
2322orim2i 911 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2421, 23sylbi 220 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2524adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 = 𝐵))
2625orcomd 871 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 = 𝐵𝑥𝐴))
2726orcanai 1003 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
2820, 27ffvelrnd 6905 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ 𝐷)
2918, 28ifclda 4474 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) ∈ 𝐷)
3011, 29cofmpt 6947 . . . 4 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
31 fvco3 6810 . . . . . . . 8 ((𝐹:𝐴𝐷𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3220, 27, 31syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3332ifeq2da 4471 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥))))
34 fvif 6733 . . . . . 6 (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥)))
3533, 34eqtr4di 2796 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))))
3635mpteq2dva 5150 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
3730, 36eqtr4d 2780 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))))
38 limccnp.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
39 eqid 2737 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
40 eqid 2737 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))
4119, 4fssd 6563 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
4219fdmd 6556 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
43 limcrcl 24771 . . . . . . . . . . 11 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4438, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4544simp2d 1145 . . . . . . . . 9 (𝜑 → dom 𝐹 ⊆ ℂ)
4642, 45eqsstrrd 3940 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
4744simp3d 1146 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4839, 2, 40, 41, 46, 47ellimc 24770 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
4938, 48mpbid 235 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
502cnfldtop 23681 . . . . . . . 8 𝐾 ∈ Top
5150a1i 11 . . . . . . 7 (𝜑𝐾 ∈ Top)
5229fmpttd 6932 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷)
5347snssd 4722 . . . . . . . . . . . 12 (𝜑 → {𝐵} ⊆ ℂ)
5446, 53unssd 4100 . . . . . . . . . . 11 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
55 resttopon 22058 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
563, 54, 55sylancr 590 . . . . . . . . . 10 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
57 toponuni 21811 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5856, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5958feq2d 6531 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷 ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷))
6052, 59mpbid 235 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷)
61 eqid 2737 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
623toponunii 21813 . . . . . . . 8 ℂ = 𝐾
6361, 62cnprest2 22187 . . . . . . 7 ((𝐾 ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷𝐷 ⊆ ℂ) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6451, 60, 4, 63syl3anc 1373 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6549, 64mpbid 235 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵))
661oveq2i 7224 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))
6766fveq1i 6718 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)
6865, 67eleqtrrdi 2849 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
69 iftrue 4445 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) = 𝐶)
70 ssun2 4087 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
71 snssg 4698 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7247, 71syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7370, 72mpbiri 261 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
7440, 69, 73, 38fvmptd3 6841 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵) = 𝐶)
7574fveq2d 6721 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)) = ((𝐽 CnP 𝐾)‘𝐶))
769, 75eleqtrrd 2841 . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)))
77 cnpco 22164 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵))) → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7868, 76, 77syl2anc 587 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7937, 78eqeltrrd 2839 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
80 eqid 2737 . . 3 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)))
81 fco 6569 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
8211, 19, 81syl2anc 587 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
8339, 2, 80, 82, 46, 47ellimc 24770 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8479, 83mpbird 260 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  cun 3864  wss 3866  ifcif 4439  {csn 4541   cuni 4819  cmpt 5135  dom cdm 5551  ccom 5555  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  t crest 16925  TopOpenctopn 16926  fldccnfld 20363  Topctop 21790  TopOnctopon 21807   CnP ccnp 22122   lim climc 24759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-topn 16928  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cnp 22125  df-xms 23218  df-ms 23219  df-limc 24763
This theorem is referenced by:  limcco  24790  dvcjbr  24846  dvcnvlem  24873
  Copyright terms: Public domain W3C validator