MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp Structured version   Visualization version   GIF version

Theorem limccnp 25799
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnp.k 𝐾 = (TopOpen‘ℂfld)
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnp (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . . . 7 𝐽 = (𝐾t 𝐷)
2 limccnp.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 24677 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . . . 8 (𝜑𝐷 ⊆ ℂ)
5 resttopon 23055 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 587 . . . . . . 7 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2833 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 23144 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1373 . . . . 5 (𝜑𝐺:𝐷⟶ℂ)
12 eqid 2730 . . . . . . . . . 10 𝐽 = 𝐽
1312cnprcl 23139 . . . . . . . . 9 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) → 𝐶 𝐽)
149, 13syl 17 . . . . . . . 8 (𝜑𝐶 𝐽)
15 toponuni 22808 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝐷) → 𝐷 = 𝐽)
167, 15syl 17 . . . . . . . 8 (𝜑𝐷 = 𝐽)
1714, 16eleqtrrd 2832 . . . . . . 7 (𝜑𝐶𝐷)
1817ad2antrr 726 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝐷)
19 limccnp.f . . . . . . . 8 (𝜑𝐹:𝐴𝐷)
2019ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝐹:𝐴𝐷)
21 elun 4119 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
22 elsni 4609 . . . . . . . . . . . 12 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
2322orim2i 910 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2421, 23sylbi 217 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2524adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 = 𝐵))
2625orcomd 871 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 = 𝐵𝑥𝐴))
2726orcanai 1004 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
2820, 27ffvelcdmd 7060 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ 𝐷)
2918, 28ifclda 4527 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) ∈ 𝐷)
3011, 29cofmpt 7107 . . . 4 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
31 fvco3 6963 . . . . . . . 8 ((𝐹:𝐴𝐷𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3220, 27, 31syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3332ifeq2da 4524 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥))))
34 fvif 6877 . . . . . 6 (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥)))
3533, 34eqtr4di 2783 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))))
3635mpteq2dva 5203 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
3730, 36eqtr4d 2768 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))))
38 limccnp.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
39 eqid 2730 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
40 eqid 2730 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))
4119, 4fssd 6708 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
4219fdmd 6701 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
43 limcrcl 25782 . . . . . . . . . . 11 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4438, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4544simp2d 1143 . . . . . . . . 9 (𝜑 → dom 𝐹 ⊆ ℂ)
4642, 45eqsstrrd 3985 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
4744simp3d 1144 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4839, 2, 40, 41, 46, 47ellimc 25781 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
4938, 48mpbid 232 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
502cnfldtop 24678 . . . . . . . 8 𝐾 ∈ Top
5150a1i 11 . . . . . . 7 (𝜑𝐾 ∈ Top)
5229fmpttd 7090 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷)
5347snssd 4776 . . . . . . . . . . . 12 (𝜑 → {𝐵} ⊆ ℂ)
5446, 53unssd 4158 . . . . . . . . . . 11 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
55 resttopon 23055 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
563, 54, 55sylancr 587 . . . . . . . . . 10 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
57 toponuni 22808 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5856, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5958feq2d 6675 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷 ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷))
6052, 59mpbid 232 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷)
61 eqid 2730 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
623toponunii 22810 . . . . . . . 8 ℂ = 𝐾
6361, 62cnprest2 23184 . . . . . . 7 ((𝐾 ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷𝐷 ⊆ ℂ) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6451, 60, 4, 63syl3anc 1373 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6549, 64mpbid 232 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵))
661oveq2i 7401 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))
6766fveq1i 6862 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)
6865, 67eleqtrrdi 2840 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
69 iftrue 4497 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) = 𝐶)
70 ssun2 4145 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
71 snssg 4750 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7247, 71syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7370, 72mpbiri 258 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
7440, 69, 73, 38fvmptd3 6994 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵) = 𝐶)
7574fveq2d 6865 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)) = ((𝐽 CnP 𝐾)‘𝐶))
769, 75eleqtrrd 2832 . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)))
77 cnpco 23161 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵))) → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7868, 76, 77syl2anc 584 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7937, 78eqeltrrd 2830 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
80 eqid 2730 . . 3 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)))
81 fco 6715 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
8211, 19, 81syl2anc 584 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
8339, 2, 80, 82, 46, 47ellimc 25781 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8479, 83mpbird 257 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cun 3915  wss 3917  ifcif 4491  {csn 4592   cuni 4874  cmpt 5191  dom cdm 5641  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  t crest 17390  TopOpenctopn 17391  fldccnfld 21271  Topctop 22787  TopOnctopon 22804   CnP ccnp 23119   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  limcco  25801  dvcjbr  25860  dvcnvlem  25887
  Copyright terms: Public domain W3C validator