MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp Structured version   Visualization version   GIF version

Theorem limccnp 24960
Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnp.k 𝐾 = (TopOpen‘ℂfld)
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnp (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . . . 7 𝐽 = (𝐾t 𝐷)
2 limccnp.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23852 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . . . 8 (𝜑𝐷 ⊆ ℂ)
5 resttopon 22220 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 586 . . . . . . 7 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2843 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 22309 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1369 . . . . 5 (𝜑𝐺:𝐷⟶ℂ)
12 eqid 2738 . . . . . . . . . 10 𝐽 = 𝐽
1312cnprcl 22304 . . . . . . . . 9 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) → 𝐶 𝐽)
149, 13syl 17 . . . . . . . 8 (𝜑𝐶 𝐽)
15 toponuni 21971 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝐷) → 𝐷 = 𝐽)
167, 15syl 17 . . . . . . . 8 (𝜑𝐷 = 𝐽)
1714, 16eleqtrrd 2842 . . . . . . 7 (𝜑𝐶𝐷)
1817ad2antrr 722 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝐷)
19 limccnp.f . . . . . . . 8 (𝜑𝐹:𝐴𝐷)
2019ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝐹:𝐴𝐷)
21 elun 4079 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
22 elsni 4575 . . . . . . . . . . . 12 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
2322orim2i 907 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2421, 23sylbi 216 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2524adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 = 𝐵))
2625orcomd 867 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 = 𝐵𝑥𝐴))
2726orcanai 999 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
2820, 27ffvelrnd 6944 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ 𝐷)
2918, 28ifclda 4491 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) ∈ 𝐷)
3011, 29cofmpt 6986 . . . 4 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
31 fvco3 6849 . . . . . . . 8 ((𝐹:𝐴𝐷𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3220, 27, 31syl2anc 583 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3332ifeq2da 4488 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥))))
34 fvif 6772 . . . . . 6 (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥)))
3533, 34eqtr4di 2797 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))))
3635mpteq2dva 5170 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
3730, 36eqtr4d 2781 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))))
38 limccnp.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
39 eqid 2738 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
40 eqid 2738 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))
4119, 4fssd 6602 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
4219fdmd 6595 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
43 limcrcl 24943 . . . . . . . . . . 11 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4438, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4544simp2d 1141 . . . . . . . . 9 (𝜑 → dom 𝐹 ⊆ ℂ)
4642, 45eqsstrrd 3956 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
4744simp3d 1142 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4839, 2, 40, 41, 46, 47ellimc 24942 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
4938, 48mpbid 231 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
502cnfldtop 23853 . . . . . . . 8 𝐾 ∈ Top
5150a1i 11 . . . . . . 7 (𝜑𝐾 ∈ Top)
5229fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷)
5347snssd 4739 . . . . . . . . . . . 12 (𝜑 → {𝐵} ⊆ ℂ)
5446, 53unssd 4116 . . . . . . . . . . 11 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
55 resttopon 22220 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
563, 54, 55sylancr 586 . . . . . . . . . 10 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
57 toponuni 21971 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5856, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5958feq2d 6570 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷 ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷))
6052, 59mpbid 231 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷)
61 eqid 2738 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
623toponunii 21973 . . . . . . . 8 ℂ = 𝐾
6361, 62cnprest2 22349 . . . . . . 7 ((𝐾 ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷𝐷 ⊆ ℂ) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6451, 60, 4, 63syl3anc 1369 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6549, 64mpbid 231 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵))
661oveq2i 7266 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))
6766fveq1i 6757 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)
6865, 67eleqtrrdi 2850 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
69 iftrue 4462 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) = 𝐶)
70 ssun2 4103 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
71 snssg 4715 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7247, 71syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7370, 72mpbiri 257 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
7440, 69, 73, 38fvmptd3 6880 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵) = 𝐶)
7574fveq2d 6760 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)) = ((𝐽 CnP 𝐾)‘𝐶))
769, 75eleqtrrd 2842 . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)))
77 cnpco 22326 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵))) → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7868, 76, 77syl2anc 583 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7937, 78eqeltrrd 2840 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
80 eqid 2738 . . 3 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)))
81 fco 6608 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
8211, 19, 81syl2anc 583 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
8339, 2, 80, 82, 46, 47ellimc 24942 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8479, 83mpbird 256 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cun 3881  wss 3883  ifcif 4456  {csn 4558   cuni 4836  cmpt 5153  dom cdm 5580  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967   CnP ccnp 22284   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  limcco  24962  dvcjbr  25018  dvcnvlem  25045
  Copyright terms: Public domain W3C validator