Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccnp Structured version   Visualization version   GIF version

Theorem limccnp 24508
 Description: If the limit of 𝐹 at 𝐵 is 𝐶 and 𝐺 is continuous at 𝐶, then the limit of 𝐺 ∘ 𝐹 at 𝐵 is 𝐺(𝐶). (Contributed by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
limccnp.f (𝜑𝐹:𝐴𝐷)
limccnp.d (𝜑𝐷 ⊆ ℂ)
limccnp.k 𝐾 = (TopOpen‘ℂfld)
limccnp.j 𝐽 = (𝐾t 𝐷)
limccnp.c (𝜑𝐶 ∈ (𝐹 lim 𝐵))
limccnp.b (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
Assertion
Ref Expression
limccnp (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))

Proof of Theorem limccnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limccnp.j . . . . . . 7 𝐽 = (𝐾t 𝐷)
2 limccnp.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
32cnfldtopon 23402 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
4 limccnp.d . . . . . . . 8 (𝜑𝐷 ⊆ ℂ)
5 resttopon 21780 . . . . . . . 8 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
63, 4, 5sylancr 590 . . . . . . 7 (𝜑 → (𝐾t 𝐷) ∈ (TopOn‘𝐷))
71, 6eqeltrid 2894 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐷))
83a1i 11 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ℂ))
9 limccnp.b . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶))
10 cnpf2 21869 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐷) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶)) → 𝐺:𝐷⟶ℂ)
117, 8, 9, 10syl3anc 1368 . . . . 5 (𝜑𝐺:𝐷⟶ℂ)
12 eqid 2798 . . . . . . . . . 10 𝐽 = 𝐽
1312cnprcl 21864 . . . . . . . . 9 (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝐶) → 𝐶 𝐽)
149, 13syl 17 . . . . . . . 8 (𝜑𝐶 𝐽)
15 toponuni 21533 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝐷) → 𝐷 = 𝐽)
167, 15syl 17 . . . . . . . 8 (𝜑𝐷 = 𝐽)
1714, 16eleqtrrd 2893 . . . . . . 7 (𝜑𝐶𝐷)
1817ad2antrr 725 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑥 = 𝐵) → 𝐶𝐷)
19 limccnp.f . . . . . . . 8 (𝜑𝐹:𝐴𝐷)
2019ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝐹:𝐴𝐷)
21 elun 4076 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
22 elsni 4542 . . . . . . . . . . . 12 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
2322orim2i 908 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2421, 23sylbi 220 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∪ {𝐵}) → (𝑥𝐴𝑥 = 𝐵))
2524adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥𝐴𝑥 = 𝐵))
2625orcomd 868 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → (𝑥 = 𝐵𝑥𝐴))
2726orcanai 1000 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐴)
2820, 27ffvelrnd 6834 . . . . . 6 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ 𝐷)
2918, 28ifclda 4459 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) ∈ 𝐷)
3011, 29cofmpt 6876 . . . 4 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
31 fvco3 6742 . . . . . . . 8 ((𝐹:𝐴𝐷𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3220, 27, 31syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑥 = 𝐵) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
3332ifeq2da 4456 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥))))
34 fvif 6666 . . . . . 6 (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = if(𝑥 = 𝐵, (𝐺𝐶), (𝐺‘(𝐹𝑥)))
3533, 34eqtr4di 2851 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∪ {𝐵})) → if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)) = (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))))
3635mpteq2dva 5126 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ (𝐺‘if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))))
3730, 36eqtr4d 2836 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))))
38 limccnp.c . . . . . . 7 (𝜑𝐶 ∈ (𝐹 lim 𝐵))
39 eqid 2798 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
40 eqid 2798 . . . . . . . 8 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))
4119, 4fssd 6505 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
4219fdmd 6500 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
43 limcrcl 24491 . . . . . . . . . . 11 (𝐶 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4438, 43syl 17 . . . . . . . . . 10 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
4544simp2d 1140 . . . . . . . . 9 (𝜑 → dom 𝐹 ⊆ ℂ)
4642, 45eqsstrrd 3954 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
4744simp3d 1141 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
4839, 2, 40, 41, 46, 47ellimc 24490 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
4938, 48mpbid 235 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
502cnfldtop 23403 . . . . . . . 8 𝐾 ∈ Top
5150a1i 11 . . . . . . 7 (𝜑𝐾 ∈ Top)
5229fmpttd 6861 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷)
5347snssd 4702 . . . . . . . . . . . 12 (𝜑 → {𝐵} ⊆ ℂ)
5446, 53unssd 4113 . . . . . . . . . . 11 (𝜑 → (𝐴 ∪ {𝐵}) ⊆ ℂ)
55 resttopon 21780 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘ℂ) ∧ (𝐴 ∪ {𝐵}) ⊆ ℂ) → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
563, 54, 55sylancr 590 . . . . . . . . . 10 (𝜑 → (𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})))
57 toponuni 21533 . . . . . . . . . 10 ((𝐾t (𝐴 ∪ {𝐵})) ∈ (TopOn‘(𝐴 ∪ {𝐵})) → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5856, 57syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐾t (𝐴 ∪ {𝐵})))
5958feq2d 6476 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))):(𝐴 ∪ {𝐵})⟶𝐷 ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷))
6052, 59mpbid 235 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷)
61 eqid 2798 . . . . . . . 8 (𝐾t (𝐴 ∪ {𝐵})) = (𝐾t (𝐴 ∪ {𝐵}))
623toponunii 21535 . . . . . . . 8 ℂ = 𝐾
6361, 62cnprest2 21909 . . . . . . 7 ((𝐾 ∈ Top ∧ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))): (𝐾t (𝐴 ∪ {𝐵}))⟶𝐷𝐷 ⊆ ℂ) → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6451, 60, 4, 63syl3anc 1368 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)))
6549, 64mpbid 235 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵))
661oveq2i 7151 . . . . . 6 ((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽) = ((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))
6766fveq1i 6651 . . . . 5 (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) = (((𝐾t (𝐴 ∪ {𝐵})) CnP (𝐾t 𝐷))‘𝐵)
6865, 67eleqtrrdi 2901 . . . 4 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵))
69 iftrue 4431 . . . . . . 7 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)) = 𝐶)
70 ssun2 4100 . . . . . . . 8 {𝐵} ⊆ (𝐴 ∪ {𝐵})
71 snssg 4678 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7247, 71syl 17 . . . . . . . 8 (𝜑 → (𝐵 ∈ (𝐴 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝐴 ∪ {𝐵})))
7370, 72mpbiri 261 . . . . . . 7 (𝜑𝐵 ∈ (𝐴 ∪ {𝐵}))
7440, 69, 73, 38fvmptd3 6773 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵) = 𝐶)
7574fveq2d 6654 . . . . 5 (𝜑 → ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)) = ((𝐽 CnP 𝐾)‘𝐶))
769, 75eleqtrrd 2893 . . . 4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵)))
77 cnpco 21886 . . . 4 (((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐽)‘𝐵) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘((𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))‘𝐵))) → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7868, 76, 77syl2anc 587 . . 3 (𝜑 → (𝐺 ∘ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, 𝐶, (𝐹𝑥)))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
7937, 78eqeltrrd 2891 . 2 (𝜑 → (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵))
80 eqid 2798 . . 3 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) = (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥)))
81 fco 6508 . . . 4 ((𝐺:𝐷⟶ℂ ∧ 𝐹:𝐴𝐷) → (𝐺𝐹):𝐴⟶ℂ)
8211, 19, 81syl2anc 587 . . 3 (𝜑 → (𝐺𝐹):𝐴⟶ℂ)
8339, 2, 80, 82, 46, 47ellimc 24490 . 2 (𝜑 → ((𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ {𝐵}) ↦ if(𝑥 = 𝐵, (𝐺𝐶), ((𝐺𝐹)‘𝑥))) ∈ (((𝐾t (𝐴 ∪ {𝐵})) CnP 𝐾)‘𝐵)))
8479, 83mpbird 260 1 (𝜑 → (𝐺𝐶) ∈ ((𝐺𝐹) lim 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ∪ cun 3879   ⊆ wss 3881  ifcif 4425  {csn 4525  ∪ cuni 4801   ↦ cmpt 5111  dom cdm 5520   ∘ ccom 5524  ⟶wf 6323  ‘cfv 6327  (class class class)co 7140  ℂcc 10531   ↾t crest 16693  TopOpenctopn 16694  ℂfldccnfld 20099  Topctop 21512  TopOnctopon 21529   CnP ccnp 21844   limℂ climc 24479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-pre-sup 10611 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fi 8866  df-sup 8897  df-inf 8898  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-div 11294  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-fz 12893  df-seq 13372  df-exp 13433  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-rest 16695  df-topn 16696  df-topgen 16716  df-psmet 20091  df-xmet 20092  df-met 20093  df-bl 20094  df-mopn 20095  df-cnfld 20100  df-top 21513  df-topon 21530  df-topsp 21552  df-bases 21565  df-cnp 21847  df-xms 22941  df-ms 22942  df-limc 24483 This theorem is referenced by:  limcco  24510  dvcjbr  24566  dvcnvlem  24593
 Copyright terms: Public domain W3C validator