| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setc2othin | Structured version Visualization version GIF version | ||
| Description: The category (SetCat‘2o) is thin. A special case of setcthin 49451. (Contributed by Zhi Wang, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| setc2othin | ⊢ (SetCat‘2o) ∈ ThinCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (⊤ → (SetCat‘2o) = (SetCat‘2o)) | |
| 2 | 2oex 8406 | . . . 4 ⊢ 2o ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 2o ∈ V) |
| 4 | elpri 4603 | . . . . . . 7 ⊢ (𝑥 ∈ {∅, {∅}} → (𝑥 = ∅ ∨ 𝑥 = {∅})) | |
| 5 | 0ex 5249 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 6 | sneq 4589 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → {𝑦} = {∅}) | |
| 7 | 6 | eqeq2d 2740 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅})) |
| 8 | 5, 7 | spcev 3563 | . . . . . . . 8 ⊢ (𝑥 = {∅} → ∃𝑦 𝑥 = {𝑦}) |
| 9 | 8 | orim2i 910 | . . . . . . 7 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 = ∅ ∨ ∃𝑦 𝑥 = {𝑦})) |
| 10 | mo0sn 48801 | . . . . . . . 8 ⊢ (∃*𝑧 𝑧 ∈ 𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑦 𝑥 = {𝑦})) | |
| 11 | 10 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 = ∅ ∨ ∃𝑦 𝑥 = {𝑦}) → ∃*𝑧 𝑧 ∈ 𝑥) |
| 12 | 4, 9, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ {∅, {∅}} → ∃*𝑧 𝑧 ∈ 𝑥) |
| 13 | df2o2 8404 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
| 14 | 12, 13 | eleq2s 2846 | . . . . 5 ⊢ (𝑥 ∈ 2o → ∃*𝑧 𝑧 ∈ 𝑥) |
| 15 | 14 | rgen 3046 | . . . 4 ⊢ ∀𝑥 ∈ 2o ∃*𝑧 𝑧 ∈ 𝑥 |
| 16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ 2o ∃*𝑧 𝑧 ∈ 𝑥) |
| 17 | 1, 3, 16 | setcthin 49451 | . 2 ⊢ (⊤ → (SetCat‘2o) ∈ ThinCat) |
| 18 | 17 | mptru 1547 | 1 ⊢ (SetCat‘2o) ∈ ThinCat |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ⊤wtru 1541 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 ∀wral 3044 Vcvv 3438 ∅c0 4286 {csn 4579 {cpr 4581 ‘cfv 6486 2oc2o 8389 SetCatcsetc 18000 ThinCatcthinc 49403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-hom 17203 df-cco 17204 df-cat 17592 df-cid 17593 df-setc 18001 df-thinc 49404 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |