| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setc2othin | Structured version Visualization version GIF version | ||
| Description: The category (SetCat‘2o) is thin. A special case of setcthin 49458. (Contributed by Zhi Wang, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| setc2othin | ⊢ (SetCat‘2o) ∈ ThinCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . . 3 ⊢ (⊤ → (SetCat‘2o) = (SetCat‘2o)) | |
| 2 | 2oex 8448 | . . . 4 ⊢ 2o ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 2o ∈ V) |
| 4 | elpri 4616 | . . . . . . 7 ⊢ (𝑥 ∈ {∅, {∅}} → (𝑥 = ∅ ∨ 𝑥 = {∅})) | |
| 5 | 0ex 5265 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 6 | sneq 4602 | . . . . . . . . . 10 ⊢ (𝑦 = ∅ → {𝑦} = {∅}) | |
| 7 | 6 | eqeq2d 2741 | . . . . . . . . 9 ⊢ (𝑦 = ∅ → (𝑥 = {𝑦} ↔ 𝑥 = {∅})) |
| 8 | 5, 7 | spcev 3575 | . . . . . . . 8 ⊢ (𝑥 = {∅} → ∃𝑦 𝑥 = {𝑦}) |
| 9 | 8 | orim2i 910 | . . . . . . 7 ⊢ ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 = ∅ ∨ ∃𝑦 𝑥 = {𝑦})) |
| 10 | mo0sn 48808 | . . . . . . . 8 ⊢ (∃*𝑧 𝑧 ∈ 𝑥 ↔ (𝑥 = ∅ ∨ ∃𝑦 𝑥 = {𝑦})) | |
| 11 | 10 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 = ∅ ∨ ∃𝑦 𝑥 = {𝑦}) → ∃*𝑧 𝑧 ∈ 𝑥) |
| 12 | 4, 9, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑥 ∈ {∅, {∅}} → ∃*𝑧 𝑧 ∈ 𝑥) |
| 13 | df2o2 8446 | . . . . . 6 ⊢ 2o = {∅, {∅}} | |
| 14 | 12, 13 | eleq2s 2847 | . . . . 5 ⊢ (𝑥 ∈ 2o → ∃*𝑧 𝑧 ∈ 𝑥) |
| 15 | 14 | rgen 3047 | . . . 4 ⊢ ∀𝑥 ∈ 2o ∃*𝑧 𝑧 ∈ 𝑥 |
| 16 | 15 | a1i 11 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ 2o ∃*𝑧 𝑧 ∈ 𝑥) |
| 17 | 1, 3, 16 | setcthin 49458 | . 2 ⊢ (⊤ → (SetCat‘2o) ∈ ThinCat) |
| 18 | 17 | mptru 1547 | 1 ⊢ (SetCat‘2o) ∈ ThinCat |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ⊤wtru 1541 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 ∀wral 3045 Vcvv 3450 ∅c0 4299 {csn 4592 {cpr 4594 ‘cfv 6514 2oc2o 8431 SetCatcsetc 18044 ThinCatcthinc 49410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-setc 18045 df-thinc 49411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |