Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pairreueq Structured version   Visualization version   GIF version

Theorem pairreueq 47116
Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.)
Hypothesis
Ref Expression
pairreueq.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
pairreueq (∃!𝑝𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))
Distinct variable groups:   𝑥,𝑝   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝑃(𝑥,𝑝)   𝑉(𝑝)

Proof of Theorem pairreueq
StepHypRef Expression
1 fveqeq2 6900 . . . . . 6 (𝑥 = 𝑝 → ((♯‘𝑥) = 2 ↔ (♯‘𝑝) = 2))
2 pairreueq.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
31, 2elrab2 3684 . . . . 5 (𝑝𝑃 ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
43anbi1i 622 . . . 4 ((𝑝𝑃𝜑) ↔ ((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑))
5 anass 467 . . . 4 (((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
64, 5bitri 274 . . 3 ((𝑝𝑃𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
76eubii 2574 . 2 (∃!𝑝(𝑝𝑃𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
8 df-reu 3366 . 2 (∃!𝑝𝑃 𝜑 ↔ ∃!𝑝(𝑝𝑃𝜑))
9 df-reu 3366 . 2 (∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
107, 8, 93bitr4i 302 1 (∃!𝑝𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  ∃!weu 2557  ∃!wreu 3363  {crab 3420  𝒫 cpw 4598  cfv 6544  2c2 12311  chash 14340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-reu 3366  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-br 5145  df-iota 6496  df-fv 6552
This theorem is referenced by:  requad2  47229
  Copyright terms: Public domain W3C validator