Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pairreueq | Structured version Visualization version GIF version |
Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
Ref | Expression |
---|---|
pairreueq.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
pairreueq | ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6838 | . . . . . 6 ⊢ (𝑥 = 𝑝 → ((♯‘𝑥) = 2 ↔ (♯‘𝑝) = 2)) | |
2 | pairreueq.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
3 | 1, 2 | elrab2 3640 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
4 | 3 | anbi1i 625 | . . . 4 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑)) |
5 | anass 470 | . . . 4 ⊢ (((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
7 | 6 | eubii 2584 | . 2 ⊢ (∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
8 | df-reu 3351 | . 2 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑)) | |
9 | df-reu 3351 | . 2 ⊢ (∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃!weu 2567 ∃!wreu 3348 {crab 3404 𝒫 cpw 4551 ‘cfv 6483 2c2 12133 ♯chash 14149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-reu 3351 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 |
This theorem is referenced by: requad2 45493 |
Copyright terms: Public domain | W3C validator |