![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pairreueq | Structured version Visualization version GIF version |
Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
Ref | Expression |
---|---|
pairreueq.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
pairreueq | ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6916 | . . . . . 6 ⊢ (𝑥 = 𝑝 → ((♯‘𝑥) = 2 ↔ (♯‘𝑝) = 2)) | |
2 | pairreueq.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
3 | 1, 2 | elrab2 3698 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑)) |
5 | anass 468 | . . . 4 ⊢ (((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
7 | 6 | eubii 2583 | . 2 ⊢ (∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
8 | df-reu 3379 | . 2 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑)) | |
9 | df-reu 3379 | . 2 ⊢ (∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃!weu 2566 ∃!wreu 3376 {crab 3433 𝒫 cpw 4605 ‘cfv 6563 2c2 12319 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-reu 3379 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: requad2 47548 |
Copyright terms: Public domain | W3C validator |