![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pairreueq | Structured version Visualization version GIF version |
Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
Ref | Expression |
---|---|
pairreueq.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
pairreueq | ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6890 | . . . . . 6 ⊢ (𝑥 = 𝑝 → ((♯‘𝑥) = 2 ↔ (♯‘𝑝) = 2)) | |
2 | pairreueq.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
3 | 1, 2 | elrab2 3678 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
4 | 3 | anbi1i 623 | . . . 4 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑)) |
5 | anass 468 | . . . 4 ⊢ (((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
7 | 6 | eubii 2571 | . 2 ⊢ (∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
8 | df-reu 3369 | . 2 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑)) | |
9 | df-reu 3369 | . 2 ⊢ (∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃!weu 2554 ∃!wreu 3366 {crab 3424 𝒫 cpw 4594 ‘cfv 6533 2c2 12264 ♯chash 14287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 |
This theorem is referenced by: requad2 46776 |
Copyright terms: Public domain | W3C validator |