| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pairreueq | Structured version Visualization version GIF version | ||
| Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.) |
| Ref | Expression |
|---|---|
| pairreueq.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| pairreueq | ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝑝 → ((♯‘𝑥) = 2 ↔ (♯‘𝑝) = 2)) | |
| 2 | pairreueq.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 3 | 1, 2 | elrab2 3647 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2)) |
| 4 | 3 | anbi1i 624 | . . . 4 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑)) |
| 5 | anass 468 | . . . 4 ⊢ (((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
| 6 | 4, 5 | bitri 275 | . . 3 ⊢ ((𝑝 ∈ 𝑃 ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
| 7 | 6 | eubii 2582 | . 2 ⊢ (∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) |
| 8 | df-reu 3349 | . 2 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝(𝑝 ∈ 𝑃 ∧ 𝜑)) | |
| 9 | df-reu 3349 | . 2 ⊢ (∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑))) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃!𝑝 ∈ 𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃!weu 2565 ∃!wreu 3346 {crab 3397 𝒫 cpw 4551 ‘cfv 6489 2c2 12190 ♯chash 14247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-reu 3349 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: requad2 47737 |
| Copyright terms: Public domain | W3C validator |