Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pairreueq Structured version   Visualization version   GIF version

Theorem pairreueq 45380
Description: Two equivalent representations of the existence of a unique proper pair. (Contributed by AV, 1-Mar-2023.)
Hypothesis
Ref Expression
pairreueq.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
pairreueq (∃!𝑝𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))
Distinct variable groups:   𝑥,𝑝   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑝)   𝑃(𝑥,𝑝)   𝑉(𝑝)

Proof of Theorem pairreueq
StepHypRef Expression
1 fveqeq2 6838 . . . . . 6 (𝑥 = 𝑝 → ((♯‘𝑥) = 2 ↔ (♯‘𝑝) = 2))
2 pairreueq.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
31, 2elrab2 3640 . . . . 5 (𝑝𝑃 ↔ (𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2))
43anbi1i 625 . . . 4 ((𝑝𝑃𝜑) ↔ ((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑))
5 anass 470 . . . 4 (((𝑝 ∈ 𝒫 𝑉 ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
64, 5bitri 275 . . 3 ((𝑝𝑃𝜑) ↔ (𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
76eubii 2584 . 2 (∃!𝑝(𝑝𝑃𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
8 df-reu 3351 . 2 (∃!𝑝𝑃 𝜑 ↔ ∃!𝑝(𝑝𝑃𝜑))
9 df-reu 3351 . 2 (∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ 𝒫 𝑉 ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
107, 8, 93bitr4i 303 1 (∃!𝑝𝑃 𝜑 ↔ ∃!𝑝 ∈ 𝒫 𝑉((♯‘𝑝) = 2 ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1541  wcel 2106  ∃!weu 2567  ∃!wreu 3348  {crab 3404  𝒫 cpw 4551  cfv 6483  2c2 12133  chash 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-reu 3351  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-iota 6435  df-fv 6491
This theorem is referenced by:  requad2  45493
  Copyright terms: Public domain W3C validator