Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropreud Structured version   Visualization version   GIF version

Theorem prproropreud 44849
Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.)
Hypotheses
Ref Expression
prproropreud.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropreud.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropreud.b (𝜑𝑅 Or 𝑉)
prproropreud.x (𝑥 = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ → (𝜓𝜒))
prproropreud.z (𝑥 = 𝑧 → (𝜓𝜃))
Assertion
Ref Expression
prproropreud (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 𝜒))
Distinct variable groups:   𝑂,𝑝,𝑥,𝑦   𝑃,𝑝,𝑥,𝑦   𝑅,𝑝,𝑥,𝑦   𝑉,𝑝,𝑥,𝑦   𝜒,𝑥   𝜑,𝑝,𝑥,𝑦   𝜓,𝑦   𝜓,𝑧   𝜃,𝑥   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑝)   𝜒(𝑦,𝑧,𝑝)   𝜃(𝑦,𝑧,𝑝)   𝑃(𝑧)   𝑅(𝑧)   𝑂(𝑧)   𝑉(𝑧)

Proof of Theorem prproropreud
StepHypRef Expression
1 prproropreud.b . . . 4 (𝜑𝑅 Or 𝑉)
2 prproropreud.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
3 prproropreud.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
4 eqid 2738 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
52, 3, 4prproropf1o 44847 . . . 4 (𝑅 Or 𝑉 → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩):𝑃1-1-onto𝑂)
61, 5syl 17 . . 3 (𝜑 → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩):𝑃1-1-onto𝑂)
7 sbceq1a 3722 . . . 4 (𝑥 = ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) → (𝜓[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
87adantl 481 . . 3 ((𝜑𝑥 = ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦)) → (𝜓[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
9 prproropreud.z . . 3 (𝑥 = 𝑧 → (𝜓𝜃))
10 nfsbc1v 3731 . . 3 𝑥[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓
116, 8, 9, 10reuf1odnf 44486 . 2 (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 [((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
12 eqidd 2739 . . . . . 6 ((𝜑𝑦𝑃) → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩))
13 infeq1 9165 . . . . . . . 8 (𝑝 = 𝑦 → inf(𝑝, 𝑉, 𝑅) = inf(𝑦, 𝑉, 𝑅))
14 supeq1 9134 . . . . . . . 8 (𝑝 = 𝑦 → sup(𝑝, 𝑉, 𝑅) = sup(𝑦, 𝑉, 𝑅))
1513, 14opeq12d 4809 . . . . . . 7 (𝑝 = 𝑦 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
1615adantl 481 . . . . . 6 (((𝜑𝑦𝑃) ∧ 𝑝 = 𝑦) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
17 simpr 484 . . . . . 6 ((𝜑𝑦𝑃) → 𝑦𝑃)
18 opex 5373 . . . . . . 7 ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑦𝑃) → ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V)
2012, 16, 17, 19fvmptd 6864 . . . . 5 ((𝜑𝑦𝑃) → ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
2120sbceq1d 3716 . . . 4 ((𝜑𝑦𝑃) → ([((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓[⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓))
22 prproropreud.x . . . . . 6 (𝑥 = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ → (𝜓𝜒))
2322sbcieg 3751 . . . . 5 (⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V → ([⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓𝜒))
2419, 23syl 17 . . . 4 ((𝜑𝑦𝑃) → ([⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓𝜒))
2521, 24bitrd 278 . . 3 ((𝜑𝑦𝑃) → ([((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓𝜒))
2625reubidva 3314 . 2 (𝜑 → (∃!𝑦𝑃 [((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦𝑃 𝜒))
2711, 26bitrd 278 1 (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!wreu 3065  {crab 3067  Vcvv 3422  [wsbc 3711  cin 3882  𝒫 cpw 4530  cop 4564  cmpt 5153   Or wor 5493   × cxp 5578  1-1-ontowf1o 6417  cfv 6418  supcsup 9129  infcinf 9130  2c2 11958  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator