Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropreud Structured version   Visualization version   GIF version

Theorem prproropreud 43678
Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.)
Hypotheses
Ref Expression
prproropreud.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropreud.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropreud.b (𝜑𝑅 Or 𝑉)
prproropreud.x (𝑥 = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ → (𝜓𝜒))
prproropreud.z (𝑥 = 𝑧 → (𝜓𝜃))
Assertion
Ref Expression
prproropreud (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 𝜒))
Distinct variable groups:   𝑂,𝑝,𝑥,𝑦   𝑃,𝑝,𝑥,𝑦   𝑅,𝑝,𝑥,𝑦   𝑉,𝑝,𝑥,𝑦   𝜒,𝑥   𝜑,𝑝,𝑥,𝑦   𝜓,𝑦   𝜓,𝑧   𝜃,𝑥   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑝)   𝜒(𝑦,𝑧,𝑝)   𝜃(𝑦,𝑧,𝑝)   𝑃(𝑧)   𝑅(𝑧)   𝑂(𝑧)   𝑉(𝑧)

Proof of Theorem prproropreud
StepHypRef Expression
1 prproropreud.b . . . 4 (𝜑𝑅 Or 𝑉)
2 prproropreud.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
3 prproropreud.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
4 eqid 2823 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
52, 3, 4prproropf1o 43676 . . . 4 (𝑅 Or 𝑉 → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩):𝑃1-1-onto𝑂)
61, 5syl 17 . . 3 (𝜑 → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩):𝑃1-1-onto𝑂)
7 sbceq1a 3785 . . . 4 (𝑥 = ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) → (𝜓[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
87adantl 484 . . 3 ((𝜑𝑥 = ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦)) → (𝜓[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
9 prproropreud.z . . 3 (𝑥 = 𝑧 → (𝜓𝜃))
10 nfsbc1v 3794 . . 3 𝑥[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓
116, 8, 9, 10reuf1odnf 43313 . 2 (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 [((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
12 eqidd 2824 . . . . . 6 ((𝜑𝑦𝑃) → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩))
13 infeq1 8942 . . . . . . . 8 (𝑝 = 𝑦 → inf(𝑝, 𝑉, 𝑅) = inf(𝑦, 𝑉, 𝑅))
14 supeq1 8911 . . . . . . . 8 (𝑝 = 𝑦 → sup(𝑝, 𝑉, 𝑅) = sup(𝑦, 𝑉, 𝑅))
1513, 14opeq12d 4813 . . . . . . 7 (𝑝 = 𝑦 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
1615adantl 484 . . . . . 6 (((𝜑𝑦𝑃) ∧ 𝑝 = 𝑦) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
17 simpr 487 . . . . . 6 ((𝜑𝑦𝑃) → 𝑦𝑃)
18 opex 5358 . . . . . . 7 ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑦𝑃) → ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V)
2012, 16, 17, 19fvmptd 6777 . . . . 5 ((𝜑𝑦𝑃) → ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
2120sbceq1d 3779 . . . 4 ((𝜑𝑦𝑃) → ([((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓[⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓))
22 prproropreud.x . . . . . 6 (𝑥 = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ → (𝜓𝜒))
2322sbcieg 3812 . . . . 5 (⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V → ([⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓𝜒))
2419, 23syl 17 . . . 4 ((𝜑𝑦𝑃) → ([⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓𝜒))
2521, 24bitrd 281 . . 3 ((𝜑𝑦𝑃) → ([((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓𝜒))
2625reubidva 3390 . 2 (𝜑 → (∃!𝑦𝑃 [((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦𝑃 𝜒))
2711, 26bitrd 281 1 (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  ∃!wreu 3142  {crab 3144  Vcvv 3496  [wsbc 3774  cin 3937  𝒫 cpw 4541  cop 4575  cmpt 5148   Or wor 5475   × cxp 5555  1-1-ontowf1o 6356  cfv 6357  supcsup 8906  infcinf 8907  2c2 11695  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator