Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prproropreud Structured version   Visualization version   GIF version

Theorem prproropreud 47434
Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.)
Hypotheses
Ref Expression
prproropreud.o 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
prproropreud.p 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
prproropreud.b (𝜑𝑅 Or 𝑉)
prproropreud.x (𝑥 = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ → (𝜓𝜒))
prproropreud.z (𝑥 = 𝑧 → (𝜓𝜃))
Assertion
Ref Expression
prproropreud (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 𝜒))
Distinct variable groups:   𝑂,𝑝,𝑥,𝑦   𝑃,𝑝,𝑥,𝑦   𝑅,𝑝,𝑥,𝑦   𝑉,𝑝,𝑥,𝑦   𝜒,𝑥   𝜑,𝑝,𝑥,𝑦   𝜓,𝑦   𝜓,𝑧   𝜃,𝑥   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑝)   𝜒(𝑦,𝑧,𝑝)   𝜃(𝑦,𝑧,𝑝)   𝑃(𝑧)   𝑅(𝑧)   𝑂(𝑧)   𝑉(𝑧)

Proof of Theorem prproropreud
StepHypRef Expression
1 prproropreud.b . . . 4 (𝜑𝑅 Or 𝑉)
2 prproropreud.o . . . . 5 𝑂 = (𝑅 ∩ (𝑉 × 𝑉))
3 prproropreud.p . . . . 5 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}
4 eqid 2735 . . . . 5 (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)
52, 3, 4prproropf1o 47432 . . . 4 (𝑅 Or 𝑉 → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩):𝑃1-1-onto𝑂)
61, 5syl 17 . . 3 (𝜑 → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩):𝑃1-1-onto𝑂)
7 sbceq1a 3802 . . . 4 (𝑥 = ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) → (𝜓[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
87adantl 481 . . 3 ((𝜑𝑥 = ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦)) → (𝜓[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
9 prproropreud.z . . 3 (𝑥 = 𝑧 → (𝜓𝜃))
10 nfsbc1v 3811 . . 3 𝑥[((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓
116, 8, 9, 10reuf1odnf 47057 . 2 (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 [((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓))
12 eqidd 2736 . . . . . 6 ((𝜑𝑦𝑃) → (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩) = (𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩))
13 infeq1 9514 . . . . . . . 8 (𝑝 = 𝑦 → inf(𝑝, 𝑉, 𝑅) = inf(𝑦, 𝑉, 𝑅))
14 supeq1 9483 . . . . . . . 8 (𝑝 = 𝑦 → sup(𝑝, 𝑉, 𝑅) = sup(𝑦, 𝑉, 𝑅))
1513, 14opeq12d 4886 . . . . . . 7 (𝑝 = 𝑦 → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
1615adantl 481 . . . . . 6 (((𝜑𝑦𝑃) ∧ 𝑝 = 𝑦) → ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩ = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
17 simpr 484 . . . . . 6 ((𝜑𝑦𝑃) → 𝑦𝑃)
18 opex 5475 . . . . . . 7 ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑦𝑃) → ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V)
2012, 16, 17, 19fvmptd 7023 . . . . 5 ((𝜑𝑦𝑃) → ((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩)
2120sbceq1d 3796 . . . 4 ((𝜑𝑦𝑃) → ([((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓[⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓))
22 prproropreud.x . . . . . 6 (𝑥 = ⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ → (𝜓𝜒))
2322sbcieg 3832 . . . . 5 (⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ ∈ V → ([⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓𝜒))
2419, 23syl 17 . . . 4 ((𝜑𝑦𝑃) → ([⟨inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)⟩ / 𝑥]𝜓𝜒))
2521, 24bitrd 279 . . 3 ((𝜑𝑦𝑃) → ([((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓𝜒))
2625reubidva 3394 . 2 (𝜑 → (∃!𝑦𝑃 [((𝑝𝑃 ↦ ⟨inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)⟩)‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦𝑃 𝜒))
2711, 26bitrd 279 1 (𝜑 → (∃!𝑥𝑂 𝜓 ↔ ∃!𝑦𝑃 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃!wreu 3376  {crab 3433  Vcvv 3478  [wsbc 3791  cin 3962  𝒫 cpw 4605  cop 4637  cmpt 5231   Or wor 5596   × cxp 5687  1-1-ontowf1o 6562  cfv 6563  supcsup 9478  infcinf 9479  2c2 12319  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator