![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropreud | Structured version Visualization version GIF version |
Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
Ref | Expression |
---|---|
prproropreud.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropreud.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
prproropreud.b | ⊢ (𝜑 → 𝑅 Or 𝑉) |
prproropreud.x | ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) |
prproropreud.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
prproropreud | ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropreud.b | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝑉) | |
2 | prproropreud.o | . . . . 5 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
3 | prproropreud.p | . . . . 5 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
4 | eqid 2740 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) | |
5 | 2, 3, 4 | prproropf1o 47381 | . . . 4 ⊢ (𝑅 Or 𝑉 → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉):𝑃–1-1-onto→𝑂) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉):𝑃–1-1-onto→𝑂) |
7 | sbceq1a 3815 | . . . 4 ⊢ (𝑥 = ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) → (𝜓 ↔ [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦)) → (𝜓 ↔ [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) |
9 | prproropreud.z | . . 3 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
10 | nfsbc1v 3824 | . . 3 ⊢ Ⅎ𝑥[((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 | |
11 | 6, 8, 9, 10 | reuf1odnf 47022 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) |
12 | eqidd 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)) | |
13 | infeq1 9545 | . . . . . . . 8 ⊢ (𝑝 = 𝑦 → inf(𝑝, 𝑉, 𝑅) = inf(𝑦, 𝑉, 𝑅)) | |
14 | supeq1 9514 | . . . . . . . 8 ⊢ (𝑝 = 𝑦 → sup(𝑝, 𝑉, 𝑅) = sup(𝑦, 𝑉, 𝑅)) | |
15 | 13, 14 | opeq12d 4905 | . . . . . . 7 ⊢ (𝑝 = 𝑦 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ 𝑝 = 𝑦) → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → 𝑦 ∈ 𝑃) | |
18 | opex 5484 | . . . . . . 7 ⊢ 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V) |
20 | 12, 16, 17, 19 | fvmptd 7036 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
21 | 20 | sbceq1d 3809 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ [〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓)) |
22 | prproropreud.x | . . . . . 6 ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) | |
23 | 22 | sbcieg 3845 | . . . . 5 ⊢ (〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V → ([〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓 ↔ 𝜒)) |
24 | 19, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓 ↔ 𝜒)) |
25 | 21, 24 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
26 | 25 | reubidva 3404 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝑃 [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
27 | 11, 26 | bitrd 279 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 {crab 3443 Vcvv 3488 [wsbc 3804 ∩ cin 3975 𝒫 cpw 4622 〈cop 4654 ↦ cmpt 5249 Or wor 5606 × cxp 5698 –1-1-onto→wf1o 6572 ‘cfv 6573 supcsup 9509 infcinf 9510 2c2 12348 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |