Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropreud | Structured version Visualization version GIF version |
Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
Ref | Expression |
---|---|
prproropreud.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropreud.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
prproropreud.b | ⊢ (𝜑 → 𝑅 Or 𝑉) |
prproropreud.x | ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) |
prproropreud.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
prproropreud | ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropreud.b | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝑉) | |
2 | prproropreud.o | . . . . 5 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
3 | prproropreud.p | . . . . 5 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
4 | eqid 2738 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) | |
5 | 2, 3, 4 | prproropf1o 44847 | . . . 4 ⊢ (𝑅 Or 𝑉 → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉):𝑃–1-1-onto→𝑂) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉):𝑃–1-1-onto→𝑂) |
7 | sbceq1a 3722 | . . . 4 ⊢ (𝑥 = ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) → (𝜓 ↔ [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) | |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦)) → (𝜓 ↔ [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) |
9 | prproropreud.z | . . 3 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
10 | nfsbc1v 3731 | . . 3 ⊢ Ⅎ𝑥[((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 | |
11 | 6, 8, 9, 10 | reuf1odnf 44486 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) |
12 | eqidd 2739 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)) | |
13 | infeq1 9165 | . . . . . . . 8 ⊢ (𝑝 = 𝑦 → inf(𝑝, 𝑉, 𝑅) = inf(𝑦, 𝑉, 𝑅)) | |
14 | supeq1 9134 | . . . . . . . 8 ⊢ (𝑝 = 𝑦 → sup(𝑝, 𝑉, 𝑅) = sup(𝑦, 𝑉, 𝑅)) | |
15 | 13, 14 | opeq12d 4809 | . . . . . . 7 ⊢ (𝑝 = 𝑦 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
16 | 15 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ 𝑝 = 𝑦) → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → 𝑦 ∈ 𝑃) | |
18 | opex 5373 | . . . . . . 7 ⊢ 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V) |
20 | 12, 16, 17, 19 | fvmptd 6864 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
21 | 20 | sbceq1d 3716 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ [〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓)) |
22 | prproropreud.x | . . . . . 6 ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) | |
23 | 22 | sbcieg 3751 | . . . . 5 ⊢ (〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V → ([〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓 ↔ 𝜒)) |
24 | 19, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓 ↔ 𝜒)) |
25 | 21, 24 | bitrd 278 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
26 | 25 | reubidva 3314 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝑃 [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
27 | 11, 26 | bitrd 278 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!wreu 3065 {crab 3067 Vcvv 3422 [wsbc 3711 ∩ cin 3882 𝒫 cpw 4530 〈cop 4564 ↦ cmpt 5153 Or wor 5493 × cxp 5578 –1-1-onto→wf1o 6417 ‘cfv 6418 supcsup 9129 infcinf 9130 2c2 11958 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |