Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prproropreud | Structured version Visualization version GIF version |
Description: There is exactly one ordered ordered pair fulfilling a wff iff there is exactly one proper pair fulfilling an equivalent wff. (Contributed by AV, 20-Mar-2023.) |
Ref | Expression |
---|---|
prproropreud.o | ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) |
prproropreud.p | ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} |
prproropreud.b | ⊢ (𝜑 → 𝑅 Or 𝑉) |
prproropreud.x | ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) |
prproropreud.z | ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
prproropreud | ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prproropreud.b | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝑉) | |
2 | prproropreud.o | . . . . 5 ⊢ 𝑂 = (𝑅 ∩ (𝑉 × 𝑉)) | |
3 | prproropreud.p | . . . . 5 ⊢ 𝑃 = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} | |
4 | eqid 2738 | . . . . 5 ⊢ (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) | |
5 | 2, 3, 4 | prproropf1o 44959 | . . . 4 ⊢ (𝑅 Or 𝑉 → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉):𝑃–1-1-onto→𝑂) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉):𝑃–1-1-onto→𝑂) |
7 | sbceq1a 3727 | . . . 4 ⊢ (𝑥 = ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) → (𝜓 ↔ [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) | |
8 | 7 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦)) → (𝜓 ↔ [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) |
9 | prproropreud.z | . . 3 ⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜃)) | |
10 | nfsbc1v 3736 | . . 3 ⊢ Ⅎ𝑥[((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 | |
11 | 6, 8, 9, 10 | reuf1odnf 44599 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓)) |
12 | eqidd 2739 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉) = (𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)) | |
13 | infeq1 9235 | . . . . . . . 8 ⊢ (𝑝 = 𝑦 → inf(𝑝, 𝑉, 𝑅) = inf(𝑦, 𝑉, 𝑅)) | |
14 | supeq1 9204 | . . . . . . . 8 ⊢ (𝑝 = 𝑦 → sup(𝑝, 𝑉, 𝑅) = sup(𝑦, 𝑉, 𝑅)) | |
15 | 13, 14 | opeq12d 4812 | . . . . . . 7 ⊢ (𝑝 = 𝑦 → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
16 | 15 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝑃) ∧ 𝑝 = 𝑦) → 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
17 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → 𝑦 ∈ 𝑃) | |
18 | opex 5379 | . . . . . . 7 ⊢ 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V) |
20 | 12, 16, 17, 19 | fvmptd 6882 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉) |
21 | 20 | sbceq1d 3721 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ [〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓)) |
22 | prproropreud.x | . . . . . 6 ⊢ (𝑥 = 〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 → (𝜓 ↔ 𝜒)) | |
23 | 22 | sbcieg 3756 | . . . . 5 ⊢ (〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 ∈ V → ([〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓 ↔ 𝜒)) |
24 | 19, 23 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([〈inf(𝑦, 𝑉, 𝑅), sup(𝑦, 𝑉, 𝑅)〉 / 𝑥]𝜓 ↔ 𝜒)) |
25 | 21, 24 | bitrd 278 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → ([((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ 𝜒)) |
26 | 25 | reubidva 3322 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝑃 [((𝑝 ∈ 𝑃 ↦ 〈inf(𝑝, 𝑉, 𝑅), sup(𝑝, 𝑉, 𝑅)〉)‘𝑦) / 𝑥]𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
27 | 11, 26 | bitrd 278 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝑂 𝜓 ↔ ∃!𝑦 ∈ 𝑃 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!wreu 3066 {crab 3068 Vcvv 3432 [wsbc 3716 ∩ cin 3886 𝒫 cpw 4533 〈cop 4567 ↦ cmpt 5157 Or wor 5502 × cxp 5587 –1-1-onto→wf1o 6432 ‘cfv 6433 supcsup 9199 infcinf 9200 2c2 12028 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |