Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paireqne Structured version   Visualization version   GIF version

Theorem paireqne 47385
Description: Two sets are not equal iff there is exactly one proper pair whose elements are either one of these sets. (Contributed by AV, 27-Jan-2023.)
Hypotheses
Ref Expression
paireqne.a (𝜑𝐴𝑉)
paireqne.b (𝜑𝐵𝑉)
paireqne.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
paireqne (𝜑 → (∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴𝐵))
Distinct variable groups:   𝐴,𝑝,𝑥   𝐵,𝑝,𝑥   𝑃,𝑝,𝑥   𝑥,𝑉   𝜑,𝑝,𝑥
Allowed substitution hint:   𝑉(𝑝)

Proof of Theorem paireqne
Dummy variables 𝑎 𝑏 𝑞 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3331 . . . 4 (𝑝 = 𝑞 → (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵)))
21reu8 3755 . . 3 (∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∃𝑝𝑃 (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)))
3 paireqne.p . . . . . . . 8 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
43eleq2i 2836 . . . . . . 7 (𝑝𝑃𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
5 elss2prb 14537 . . . . . . 7 (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))
64, 5bitri 275 . . . . . 6 (𝑝𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}))
7 raleq 3331 . . . . . . . . . . . 12 (𝑝 = {𝑎, 𝑏} → (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∀𝑥 ∈ {𝑎, 𝑏} (𝑥 = 𝐴𝑥 = 𝐵)))
8 vex 3492 . . . . . . . . . . . . 13 𝑎 ∈ V
9 vex 3492 . . . . . . . . . . . . 13 𝑏 ∈ V
10 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = 𝐴𝑎 = 𝐴))
11 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝑥 = 𝐵𝑎 = 𝐵))
1210, 11orbi12d 917 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ (𝑎 = 𝐴𝑎 = 𝐵)))
13 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝑥 = 𝐴𝑏 = 𝐴))
14 eqeq1 2744 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝑥 = 𝐵𝑏 = 𝐵))
1513, 14orbi12d 917 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ (𝑏 = 𝐴𝑏 = 𝐵)))
168, 9, 12, 15ralpr 4725 . . . . . . . . . . . 12 (∀𝑥 ∈ {𝑎, 𝑏} (𝑥 = 𝐴𝑥 = 𝐵) ↔ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵)))
177, 16bitrdi 287 . . . . . . . . . . 11 (𝑝 = {𝑎, 𝑏} → (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))))
18 eqeq1 2744 . . . . . . . . . . . . 13 (𝑝 = {𝑎, 𝑏} → (𝑝 = 𝑞 ↔ {𝑎, 𝑏} = 𝑞))
1918imbi2d 340 . . . . . . . . . . . 12 (𝑝 = {𝑎, 𝑏} → ((∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞) ↔ (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞)))
2019ralbidv 3184 . . . . . . . . . . 11 (𝑝 = {𝑎, 𝑏} → (∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞) ↔ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞)))
2117, 20anbi12d 631 . . . . . . . . . 10 (𝑝 = {𝑎, 𝑏} → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) ↔ (((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵)) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞))))
2221ad2antll 728 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) ↔ (((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵)) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞))))
23 paireqne.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑉)
24 paireqne.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵𝑉)
2523, 24jca 511 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴𝑉𝐵𝑉))
26 prelpwi 5467 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → {𝐴, 𝐵} ∈ 𝒫 𝑉)
2827ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
29 hashprg 14444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑉𝑏𝑉) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
3029adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
3130biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑏 → (♯‘{𝑎, 𝑏}) = 2))
3231com12 32 . . . . . . . . . . . . . . . . . . 19 (𝑎𝑏 → ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (♯‘{𝑎, 𝑏}) = 2))
3332adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (♯‘{𝑎, 𝑏}) = 2))
3433impcom 407 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → (♯‘{𝑎, 𝑏}) = 2)
3534adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → (♯‘{𝑎, 𝑏}) = 2)
36 eqtr3 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏 = 𝐴𝑎 = 𝐴) → 𝑏 = 𝑎)
37 eqneqall 2957 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑏 → (𝑎𝑏 → (𝑝 = {𝑎, 𝑏} → {𝐴, 𝐵} = {𝑎, 𝑏})))
3837impd 410 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑏 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → {𝐴, 𝐵} = {𝑎, 𝑏}))
3938a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑏 → ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → {𝐴, 𝐵} = {𝑎, 𝑏})))
4039impd 410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑏 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
4140equcoms 2019 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = 𝑎 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
4236, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 = 𝐴𝑎 = 𝐴) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
4342ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝐴 → (𝑎 = 𝐴 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
44 preq12 4760 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵})
4544eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝐴, 𝐵} = {𝑎, 𝑏})
4645a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
4746expcom 413 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝐵 → (𝑎 = 𝐴 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
4843, 47jaoi 856 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝐴𝑏 = 𝐵) → (𝑎 = 𝐴 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
4948com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → ((𝑏 = 𝐴𝑏 = 𝐵) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
50 prcom 4757 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {𝑎, 𝑏} = {𝑏, 𝑎}
51 preq12 4760 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 = 𝐴𝑎 = 𝐵) → {𝑏, 𝑎} = {𝐴, 𝐵})
5250, 51eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 = 𝐴𝑎 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵})
5352eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏 = 𝐴𝑎 = 𝐵) → {𝐴, 𝐵} = {𝑎, 𝑏})
5453a1d 25 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 = 𝐴𝑎 = 𝐵) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
5554ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝐴 → (𝑎 = 𝐵 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
56 eqtr3 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏 = 𝐵𝑎 = 𝐵) → 𝑏 = 𝑎)
5756, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 = 𝐵𝑎 = 𝐵) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
5857ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = 𝐵 → (𝑎 = 𝐵 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
5955, 58jaoi 856 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝐴𝑏 = 𝐵) → (𝑎 = 𝐵 → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
6059com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐵 → ((𝑏 = 𝐴𝑏 = 𝐵) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
6149, 60jaoi 856 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝐴𝑎 = 𝐵) → ((𝑏 = 𝐴𝑏 = 𝐵) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏})))
6261imp 406 . . . . . . . . . . . . . . . . . 18 (((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵)) → (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → {𝐴, 𝐵} = {𝑎, 𝑏}))
6362impcom 407 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → {𝐴, 𝐵} = {𝑎, 𝑏})
6463fveqeq2d 6928 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → ((♯‘{𝐴, 𝐵}) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
6535, 64mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → (♯‘{𝐴, 𝐵}) = 2)
6628, 65jca 511 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → ({𝐴, 𝐵} ∈ 𝒫 𝑉 ∧ (♯‘{𝐴, 𝐵}) = 2))
673eleq2i 2836 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ∈ 𝑃 ↔ {𝐴, 𝐵} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
68 fveqeq2 6929 . . . . . . . . . . . . . . . 16 (𝑥 = {𝐴, 𝐵} → ((♯‘𝑥) = 2 ↔ (♯‘{𝐴, 𝐵}) = 2))
6968elrab 3708 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ({𝐴, 𝐵} ∈ 𝒫 𝑉 ∧ (♯‘{𝐴, 𝐵}) = 2))
7067, 69bitri 275 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ∈ 𝑃 ↔ ({𝐴, 𝐵} ∈ 𝒫 𝑉 ∧ (♯‘{𝐴, 𝐵}) = 2))
7166, 70sylibr 234 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → {𝐴, 𝐵} ∈ 𝑃)
72 raleq 3331 . . . . . . . . . . . . . . 15 (𝑞 = {𝐴, 𝐵} → (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵)))
73 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑞 = {𝐴, 𝐵} → ({𝑎, 𝑏} = 𝑞 ↔ {𝑎, 𝑏} = {𝐴, 𝐵}))
7472, 73imbi12d 344 . . . . . . . . . . . . . 14 (𝑞 = {𝐴, 𝐵} → ((∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞) ↔ (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵})))
7574rspcv 3631 . . . . . . . . . . . . 13 ({𝐴, 𝐵} ∈ 𝑃 → (∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞) → (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵})))
7671, 75syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → (∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞) → (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵})))
77 eqeq1 2744 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
78 eqeq1 2744 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
7977, 78orbi12d 917 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ (𝐴 = 𝐴𝐴 = 𝐵)))
80 eqeq1 2744 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → (𝑥 = 𝐴𝐵 = 𝐴))
81 eqeq1 2744 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → (𝑥 = 𝐵𝐵 = 𝐵))
8280, 81orbi12d 917 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ (𝐵 = 𝐴𝐵 = 𝐵)))
8379, 82ralprg 4719 . . . . . . . . . . . . . . . 16 ((𝐴𝑉𝐵𝑉) → (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) ↔ ((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵))))
8425, 83syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) ↔ ((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵))))
8584imbi1d 341 . . . . . . . . . . . . . 14 (𝜑 → ((∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵}) ↔ (((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵)) → {𝑎, 𝑏} = {𝐴, 𝐵})))
8685ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → ((∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵}) ↔ (((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵)) → {𝑎, 𝑏} = {𝐴, 𝐵})))
87 eqid 2740 . . . . . . . . . . . . . . . 16 𝐴 = 𝐴
8887orci 864 . . . . . . . . . . . . . . 15 (𝐴 = 𝐴𝐴 = 𝐵)
89 eqid 2740 . . . . . . . . . . . . . . . 16 𝐵 = 𝐵
9089olci 865 . . . . . . . . . . . . . . 15 (𝐵 = 𝐴𝐵 = 𝐵)
91 pm5.5 361 . . . . . . . . . . . . . . 15 (((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵)) → ((((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵)) → {𝑎, 𝑏} = {𝐴, 𝐵}) ↔ {𝑎, 𝑏} = {𝐴, 𝐵}))
9288, 90, 91mp2an 691 . . . . . . . . . . . . . 14 ((((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵)) → {𝑎, 𝑏} = {𝐴, 𝐵}) ↔ {𝑎, 𝑏} = {𝐴, 𝐵})
938, 9pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ V ∧ 𝑏 ∈ V)
94 preq12bg 4878 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ V ∧ 𝑏 ∈ V) ∧ (𝐴𝑉𝐵𝑉)) → ({𝑎, 𝑏} = {𝐴, 𝐵} ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴))))
9593, 25, 94sylancr 586 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({𝑎, 𝑏} = {𝐴, 𝐵} ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴))))
9695adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ({𝑎, 𝑏} = {𝐴, 𝐵} ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴))))
9796adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → ({𝑎, 𝑏} = {𝐴, 𝐵} ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴))))
98 eqeq12 2757 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 = 𝑏𝐴 = 𝐵))
9998necon3bid 2991 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏𝐴𝐵))
10099biimpd 229 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝑏𝐴𝐵))
101 eqeq12 2757 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝐵𝑏 = 𝐴) → (𝑎 = 𝑏𝐵 = 𝐴))
102101necon3bid 2991 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝐵𝑏 = 𝐴) → (𝑎𝑏𝐵𝐴))
103102biimpd 229 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 = 𝐵𝑏 = 𝐴) → (𝑎𝑏𝐵𝐴))
104 necom 3000 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
105103, 104imbitrrdi 252 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝐵𝑏 = 𝐴) → (𝑎𝑏𝐴𝐵))
106100, 105jaoi 856 . . . . . . . . . . . . . . . . . 18 (((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴)) → (𝑎𝑏𝐴𝐵))
107106com12 32 . . . . . . . . . . . . . . . . 17 (𝑎𝑏 → (((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴)) → 𝐴𝐵))
108107ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → (((𝑎 = 𝐴𝑏 = 𝐵) ∨ (𝑎 = 𝐵𝑏 = 𝐴)) → 𝐴𝐵))
10997, 108sylbid 240 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → ({𝑎, 𝑏} = {𝐴, 𝐵} → 𝐴𝐵))
110109adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → ({𝑎, 𝑏} = {𝐴, 𝐵} → 𝐴𝐵))
11192, 110biimtrid 242 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → ((((𝐴 = 𝐴𝐴 = 𝐵) ∧ (𝐵 = 𝐴𝐵 = 𝐵)) → {𝑎, 𝑏} = {𝐴, 𝐵}) → 𝐴𝐵))
11286, 111sylbid 240 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → ((∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = {𝐴, 𝐵}) → 𝐴𝐵))
11376, 112syld 47 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) ∧ ((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵))) → (∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞) → 𝐴𝐵))
114113ex 412 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → (((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵)) → (∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞) → 𝐴𝐵)))
115114impd 410 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → ((((𝑎 = 𝐴𝑎 = 𝐵) ∧ (𝑏 = 𝐴𝑏 = 𝐵)) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → {𝑎, 𝑏} = 𝑞)) → 𝐴𝐵))
11622, 115sylbid 240 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) → 𝐴𝐵))
117116ex 412 . . . . . . 7 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) → 𝐴𝐵)))
118117rexlimdvva 3219 . . . . . 6 (𝜑 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) → 𝐴𝐵)))
1196, 118biimtrid 242 . . . . 5 (𝜑 → (𝑝𝑃 → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) → 𝐴𝐵)))
120119imp 406 . . . 4 ((𝜑𝑝𝑃) → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) → 𝐴𝐵))
121120rexlimdva 3161 . . 3 (𝜑 → (∃𝑝𝑃 (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑞𝑃 (∀𝑥𝑞 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑞)) → 𝐴𝐵))
1222, 121biimtrid 242 . 2 (𝜑 → (∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) → 𝐴𝐵))
12327adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
124 hashprg 14444 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
12525, 124syl 17 . . . . . . . . 9 (𝜑 → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
126125biimpd 229 . . . . . . . 8 (𝜑 → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
127126imp 406 . . . . . . 7 ((𝜑𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
128123, 127jca 511 . . . . . 6 ((𝜑𝐴𝐵) → ({𝐴, 𝐵} ∈ 𝒫 𝑉 ∧ (♯‘{𝐴, 𝐵}) = 2))
129128, 70sylibr 234 . . . . 5 ((𝜑𝐴𝐵) → {𝐴, 𝐵} ∈ 𝑃)
130 raleq 3331 . . . . . . 7 (𝑝 = {𝐴, 𝐵} → (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵)))
131 eqeq1 2744 . . . . . . . . 9 (𝑝 = {𝐴, 𝐵} → (𝑝 = 𝑦 ↔ {𝐴, 𝐵} = 𝑦))
132131imbi2d 340 . . . . . . . 8 (𝑝 = {𝐴, 𝐵} → ((∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑦) ↔ (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
133132ralbidv 3184 . . . . . . 7 (𝑝 = {𝐴, 𝐵} → (∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑦) ↔ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
134130, 133anbi12d 631 . . . . . 6 (𝑝 = {𝐴, 𝐵} → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑦)) ↔ (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦))))
135134adantl 481 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑝 = {𝐴, 𝐵}) → ((∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑦)) ↔ (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦))))
136 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
137136elpr 4672 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
138137a1i 11 . . . . . . . . 9 ((𝜑𝐴𝐵) → (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵)))
139138biimpd 229 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴𝑥 = 𝐵)))
140139imp 406 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑥 ∈ {𝐴, 𝐵}) → (𝑥 = 𝐴𝑥 = 𝐵))
141140ralrimiva 3152 . . . . . 6 ((𝜑𝐴𝐵) → ∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵))
1423eleq2i 2836 . . . . . . . . . 10 (𝑦𝑃𝑦 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
143 elss2prb 14537 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑦 = {𝑎, 𝑏}))
144142, 143bitri 275 . . . . . . . . 9 (𝑦𝑃 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑦 = {𝑎, 𝑏}))
145 prid1g 4785 . . . . . . . . . . . . . . . 16 (𝑎𝑉𝑎 ∈ {𝑎, 𝑏})
146145ad2antrl 727 . . . . . . . . . . . . . . 15 (((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) → 𝑎 ∈ {𝑎, 𝑏})
147146adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → 𝑎 ∈ {𝑎, 𝑏})
148 eleq2 2833 . . . . . . . . . . . . . . 15 (𝑦 = {𝑎, 𝑏} → (𝑎𝑦𝑎 ∈ {𝑎, 𝑏}))
149148ad2antll 728 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (𝑎𝑦𝑎 ∈ {𝑎, 𝑏}))
150147, 149mpbird 257 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → 𝑎𝑦)
15112rspcv 3631 . . . . . . . . . . . . 13 (𝑎𝑦 → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → (𝑎 = 𝐴𝑎 = 𝐵)))
152150, 151syl 17 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → (𝑎 = 𝐴𝑎 = 𝐵)))
153 prid2g 4786 . . . . . . . . . . . . . . . . 17 (𝑏𝑉𝑏 ∈ {𝑎, 𝑏})
154153ad2antll 728 . . . . . . . . . . . . . . . 16 (((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) → 𝑏 ∈ {𝑎, 𝑏})
155154adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → 𝑏 ∈ {𝑎, 𝑏})
156 eleq2 2833 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑎, 𝑏} → (𝑏𝑦𝑏 ∈ {𝑎, 𝑏}))
157156ad2antll 728 . . . . . . . . . . . . . . 15 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (𝑏𝑦𝑏 ∈ {𝑎, 𝑏}))
158155, 157mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → 𝑏𝑦)
15915rspcv 3631 . . . . . . . . . . . . . 14 (𝑏𝑦 → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → (𝑏 = 𝐴𝑏 = 𝐵)))
160158, 159syl 17 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → (𝑏 = 𝐴𝑏 = 𝐵)))
161 simplrr 777 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) ∧ ((𝑏 = 𝐴𝑏 = 𝐵) ∧ (𝑎 = 𝐴𝑎 = 𝐵))) → 𝑦 = {𝑎, 𝑏})
162 eqtr3 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝐴𝑏 = 𝐴) → 𝑎 = 𝑏)
163 eqneqall 2957 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑏 → (𝑎𝑏 → {𝑎, 𝑏} = {𝐴, 𝐵}))
164163com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎𝑏 → (𝑎 = 𝑏 → {𝑎, 𝑏} = {𝐴, 𝐵}))
165164ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (𝑎 = 𝑏 → {𝑎, 𝑏} = {𝐴, 𝐵}))
166165com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵}))
167162, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝐴𝑏 = 𝐴) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵}))
168167ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → (𝑏 = 𝐴 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
16952a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 = 𝐴𝑎 = 𝐵) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵}))
170169expcom 413 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐵 → (𝑏 = 𝐴 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
171168, 170jaoi 856 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝐴𝑎 = 𝐵) → (𝑏 = 𝐴 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
172171com12 32 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐴 → ((𝑎 = 𝐴𝑎 = 𝐵) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
17344a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝐴𝑏 = 𝐵) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵}))
174173ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → (𝑏 = 𝐵 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
175 eqtr3 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 = 𝐵𝑏 = 𝐵) → 𝑎 = 𝑏)
176175, 166syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 = 𝐵𝑏 = 𝐵) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵}))
177176ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐵 → (𝑏 = 𝐵 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
178174, 177jaoi 856 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝐴𝑎 = 𝐵) → (𝑏 = 𝐵 → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
179178com12 32 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝐵 → ((𝑎 = 𝐴𝑎 = 𝐵) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
180172, 179jaoi 856 . . . . . . . . . . . . . . . . 17 ((𝑏 = 𝐴𝑏 = 𝐵) → ((𝑎 = 𝐴𝑎 = 𝐵) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵})))
181180imp 406 . . . . . . . . . . . . . . . 16 (((𝑏 = 𝐴𝑏 = 𝐵) ∧ (𝑎 = 𝐴𝑎 = 𝐵)) → ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → {𝑎, 𝑏} = {𝐴, 𝐵}))
182181impcom 407 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) ∧ ((𝑏 = 𝐴𝑏 = 𝐵) ∧ (𝑎 = 𝐴𝑎 = 𝐵))) → {𝑎, 𝑏} = {𝐴, 𝐵})
183161, 182eqtr2d 2781 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) ∧ ((𝑏 = 𝐴𝑏 = 𝐵) ∧ (𝑎 = 𝐴𝑎 = 𝐵))) → {𝐴, 𝐵} = 𝑦)
184183exp32 420 . . . . . . . . . . . . 13 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → ((𝑏 = 𝐴𝑏 = 𝐵) → ((𝑎 = 𝐴𝑎 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
185160, 184syld 47 . . . . . . . . . . . 12 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → ((𝑎 = 𝐴𝑎 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
186152, 185mpdd 43 . . . . . . . . . . 11 ((((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑦 = {𝑎, 𝑏})) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦))
187186ex 412 . . . . . . . . . 10 (((𝜑𝐴𝐵) ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑦 = {𝑎, 𝑏}) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
188187rexlimdvva 3219 . . . . . . . . 9 ((𝜑𝐴𝐵) → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑦 = {𝑎, 𝑏}) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
189144, 188biimtrid 242 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝑦𝑃 → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
190189imp 406 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑦𝑃) → (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦))
191190ralrimiva 3152 . . . . . 6 ((𝜑𝐴𝐵) → ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦))
192141, 191jca 511 . . . . 5 ((𝜑𝐴𝐵) → (∀𝑥 ∈ {𝐴, 𝐵} (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → {𝐴, 𝐵} = 𝑦)))
193129, 135, 192rspcedvd 3637 . . . 4 ((𝜑𝐴𝐵) → ∃𝑝𝑃 (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑦)))
194 raleq 3331 . . . . 5 (𝑝 = 𝑦 → (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵)))
195194reu8 3755 . . . 4 (∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ ∃𝑝𝑃 (∀𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ∧ ∀𝑦𝑃 (∀𝑥𝑦 (𝑥 = 𝐴𝑥 = 𝐵) → 𝑝 = 𝑦)))
196193, 195sylibr 234 . . 3 ((𝜑𝐴𝐵) → ∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵))
197196ex 412 . 2 (𝜑 → (𝐴𝐵 → ∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵)))
198122, 197impbid 212 1 (𝜑 → (∃!𝑝𝑃𝑥𝑝 (𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {cpr 4650  cfv 6573  2c2 12348  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  requad2  47497
  Copyright terms: Public domain W3C validator