Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  requad2 Structured version   Visualization version   GIF version

Theorem requad2 43787
Description: A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.)
Hypotheses
Ref Expression
requad2.a (𝜑𝐴 ∈ ℝ)
requad2.z (𝜑𝐴 ≠ 0)
requad2.b (𝜑𝐵 ∈ ℝ)
requad2.c (𝜑𝐶 ∈ ℝ)
requad2.d (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
requad2 (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐷,𝑝   𝜑,𝑝,𝑥

Proof of Theorem requad2
Dummy variables 𝑎 𝑏 𝑦 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 requad2.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
21recnd 10668 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
32ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝐴 ∈ ℂ)
4 requad2.z . . . . . . . . 9 (𝜑𝐴 ≠ 0)
54ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝐴 ≠ 0)
6 requad2.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
76recnd 10668 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
87ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝐵 ∈ ℂ)
9 requad2.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
109recnd 10668 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
1110ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝐶 ∈ ℂ)
12 elelpwi 4550 . . . . . . . . . . . 12 ((𝑥𝑝𝑝 ∈ 𝒫 ℝ) → 𝑥 ∈ ℝ)
1312expcom 416 . . . . . . . . . . 11 (𝑝 ∈ 𝒫 ℝ → (𝑥𝑝𝑥 ∈ ℝ))
1413adantl 484 . . . . . . . . . 10 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) → (𝑥𝑝𝑥 ∈ ℝ))
1514imp 409 . . . . . . . . 9 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝑥 ∈ ℝ)
1615recnd 10668 . . . . . . . 8 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝑥 ∈ ℂ)
17 requad2.d . . . . . . . . 9 (𝜑𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
1817ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
193, 5, 8, 11, 16, 18quad 25417 . . . . . . 7 ((((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) ∧ 𝑥𝑝) → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
2019ralbidva 3196 . . . . . 6 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
2120anbi2d 630 . . . . 5 (((𝜑 ∧ 0 ≤ 𝐷) ∧ 𝑝 ∈ 𝒫 ℝ) → (((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))))
2221reubidva 3388 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))))
23 eqid 2821 . . . . . . . 8 {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2} = {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2}
2423pairreueq 43671 . . . . . . 7 (∃!𝑝 ∈ {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2}∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
2524bicomi 226 . . . . . 6 (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))) ↔ ∃!𝑝 ∈ {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2}∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
2625a1i 11 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))) ↔ ∃!𝑝 ∈ {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2}∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))))
276renegcld 11066 . . . . . . . . 9 (𝜑 → -𝐵 ∈ ℝ)
2827adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
296resqcld 13610 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℝ)
30 4re 11720 . . . . . . . . . . . . . 14 4 ∈ ℝ
3130a1i 11 . . . . . . . . . . . . 13 (𝜑 → 4 ∈ ℝ)
321, 9remulcld 10670 . . . . . . . . . . . . 13 (𝜑 → (𝐴 · 𝐶) ∈ ℝ)
3331, 32remulcld 10670 . . . . . . . . . . . 12 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℝ)
3429, 33resubcld 11067 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℝ)
3517, 34eqeltrd 2913 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ)
3635adantr 483 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐷 ∈ ℝ)
37 simpr 487 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → 0 ≤ 𝐷)
3836, 37resqrtcld 14776 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → (√‘𝐷) ∈ ℝ)
3928, 38readdcld 10669 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 + (√‘𝐷)) ∈ ℝ)
40 2re 11710 . . . . . . . . . 10 2 ∈ ℝ
4140a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
4241, 1remulcld 10670 . . . . . . . 8 (𝜑 → (2 · 𝐴) ∈ ℝ)
4342adantr 483 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
44 2cnne0 11846 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
4544a1i 11 . . . . . . . . 9 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0))
46 mulne0 11281 . . . . . . . . 9 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (2 · 𝐴) ≠ 0)
4745, 2, 4, 46syl12anc 834 . . . . . . . 8 (𝜑 → (2 · 𝐴) ≠ 0)
4847adantr 483 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ≠ 0)
4939, 43, 48redivcld 11467 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
506adantr 483 . . . . . . . . 9 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐵 ∈ ℝ)
5150renegcld 11066 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → -𝐵 ∈ ℝ)
5251, 38resubcld 11067 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (-𝐵 − (√‘𝐷)) ∈ ℝ)
5340a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → 2 ∈ ℝ)
541adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → 𝐴 ∈ ℝ)
5553, 54remulcld 10670 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (2 · 𝐴) ∈ ℝ)
5652, 55, 48redivcld 11467 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ∈ ℝ)
57 fveqeq2 6678 . . . . . . 7 (𝑞 = 𝑥 → ((♯‘𝑞) = 2 ↔ (♯‘𝑥) = 2))
5857cbvrabv 3491 . . . . . 6 {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2} = {𝑥 ∈ 𝒫 ℝ ∣ (♯‘𝑥) = 2}
5949, 56, 58paireqne 43672 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑝 ∈ {𝑞 ∈ 𝒫 ℝ ∣ (♯‘𝑞) = 2}∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))) ↔ ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ≠ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))
607negcld 10983 . . . . . . . . . . 11 (𝜑 → -𝐵 ∈ ℂ)
6135recnd 10668 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℂ)
6261sqrtcld 14796 . . . . . . . . . . 11 (𝜑 → (√‘𝐷) ∈ ℂ)
6360, 62addcld 10659 . . . . . . . . . 10 (𝜑 → (-𝐵 + (√‘𝐷)) ∈ ℂ)
6460, 62subcld 10996 . . . . . . . . . 10 (𝜑 → (-𝐵 − (√‘𝐷)) ∈ ℂ)
65 2cnd 11714 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℂ)
6665, 2mulcld 10660 . . . . . . . . . 10 (𝜑 → (2 · 𝐴) ∈ ℂ)
67 div11 11325 . . . . . . . . . 10 (((-𝐵 + (√‘𝐷)) ∈ ℂ ∧ (-𝐵 − (√‘𝐷)) ∈ ℂ ∧ ((2 · 𝐴) ∈ ℂ ∧ (2 · 𝐴) ≠ 0)) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ (-𝐵 + (√‘𝐷)) = (-𝐵 − (√‘𝐷))))
6863, 64, 66, 47, 67syl112anc 1370 . . . . . . . . 9 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ (-𝐵 + (√‘𝐷)) = (-𝐵 − (√‘𝐷))))
6960, 62negsubd 11002 . . . . . . . . . . 11 (𝜑 → (-𝐵 + -(√‘𝐷)) = (-𝐵 − (√‘𝐷)))
7069eqcomd 2827 . . . . . . . . . 10 (𝜑 → (-𝐵 − (√‘𝐷)) = (-𝐵 + -(√‘𝐷)))
7170eqeq2d 2832 . . . . . . . . 9 (𝜑 → ((-𝐵 + (√‘𝐷)) = (-𝐵 − (√‘𝐷)) ↔ (-𝐵 + (√‘𝐷)) = (-𝐵 + -(√‘𝐷))))
7262negcld 10983 . . . . . . . . . 10 (𝜑 → -(√‘𝐷) ∈ ℂ)
7360, 62, 72addcand 10842 . . . . . . . . 9 (𝜑 → ((-𝐵 + (√‘𝐷)) = (-𝐵 + -(√‘𝐷)) ↔ (√‘𝐷) = -(√‘𝐷)))
7468, 71, 733bitrd 307 . . . . . . . 8 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ (√‘𝐷) = -(√‘𝐷)))
7574necon3bid 3060 . . . . . . 7 (𝜑 → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ≠ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ (√‘𝐷) ≠ -(√‘𝐷)))
7675adantr 483 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ≠ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ (√‘𝐷) ≠ -(√‘𝐷)))
77 cnsqrt00 14751 . . . . . . . . . 10 (𝐷 ∈ ℂ → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7861, 77syl 17 . . . . . . . . 9 (𝜑 → ((√‘𝐷) = 0 ↔ 𝐷 = 0))
7978necon3bid 3060 . . . . . . . 8 (𝜑 → ((√‘𝐷) ≠ 0 ↔ 𝐷 ≠ 0))
8079adantr 483 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) ≠ 0 ↔ 𝐷 ≠ 0))
8162eqnegd 11360 . . . . . . . . 9 (𝜑 → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
8281adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) = -(√‘𝐷) ↔ (√‘𝐷) = 0))
8382necon3bid 3060 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) ≠ -(√‘𝐷) ↔ (√‘𝐷) ≠ 0))
84 0red 10643 . . . . . . . 8 ((𝜑 ∧ 0 ≤ 𝐷) → 0 ∈ ℝ)
8584, 36, 37leltned 10792 . . . . . . 7 ((𝜑 ∧ 0 ≤ 𝐷) → (0 < 𝐷𝐷 ≠ 0))
8680, 83, 853bitr4d 313 . . . . . 6 ((𝜑 ∧ 0 ≤ 𝐷) → ((√‘𝐷) ≠ -(√‘𝐷) ↔ 0 < 𝐷))
8776, 86bitrd 281 . . . . 5 ((𝜑 ∧ 0 ≤ 𝐷) → (((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ≠ ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)) ↔ 0 < 𝐷))
8826, 59, 873bitrd 307 . . . 4 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 (𝑥 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑥 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴)))) ↔ 0 < 𝐷))
8922, 88bitrd 281 . . 3 ((𝜑 ∧ 0 ≤ 𝐷) → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷))
9089expcom 416 . 2 (0 ≤ 𝐷 → (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)))
91 hash2prb 13829 . . . . . . . . . . . . 13 (𝑝 ∈ 𝒫 ℝ → ((♯‘𝑝) = 2 ↔ ∃𝑎𝑝𝑏𝑝 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
9291adantl 484 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ 𝒫 ℝ) → ((♯‘𝑝) = 2 ↔ ∃𝑎𝑝𝑏𝑝 (𝑎𝑏𝑝 = {𝑎, 𝑏})))
93 raleq 3405 . . . . . . . . . . . . . . . . . 18 (𝑝 = {𝑎, 𝑏} → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ∀𝑥 ∈ {𝑎, 𝑏} ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
94 vex 3497 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
95 vex 3497 . . . . . . . . . . . . . . . . . . 19 𝑏 ∈ V
96 oveq1 7162 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
9796oveq2d 7171 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑎↑2)))
98 oveq2 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → (𝐵 · 𝑥) = (𝐵 · 𝑎))
9998oveq1d 7170 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ((𝐵 · 𝑥) + 𝐶) = ((𝐵 · 𝑎) + 𝐶))
10097, 99oveq12d 7173 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = ((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)))
101100eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)) = 0))
102 oveq1 7162 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝑥↑2) = (𝑏↑2))
103102oveq2d 7171 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑏↑2)))
104 oveq2 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (𝐵 · 𝑥) = (𝐵 · 𝑏))
105104oveq1d 7170 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑏 → ((𝐵 · 𝑥) + 𝐶) = ((𝐵 · 𝑏) + 𝐶))
106103, 105oveq12d 7173 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑏 → ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)))
107106eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑏 → (((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0))
10894, 95, 101, 107ralpr 4635 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ {𝑎, 𝑏} ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)) = 0 ∧ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0))
10993, 108syl6bb 289 . . . . . . . . . . . . . . . . 17 (𝑝 = {𝑎, 𝑏} → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)) = 0 ∧ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0)))
110109adantl 484 . . . . . . . . . . . . . . . 16 ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)) = 0 ∧ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0)))
111110adantl 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ (((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)) = 0 ∧ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0)))
112 elelpwi 4550 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑝𝑝 ∈ 𝒫 ℝ) → 𝑏 ∈ ℝ)
113112ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏𝑝 → (𝑝 ∈ 𝒫 ℝ → 𝑏 ∈ ℝ))
114113adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎𝑝𝑏𝑝) → (𝑝 ∈ 𝒫 ℝ → 𝑏 ∈ ℝ))
115114com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ 𝒫 ℝ → ((𝑎𝑝𝑏𝑝) → 𝑏 ∈ ℝ))
116115adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ 𝒫 ℝ) → ((𝑎𝑝𝑏𝑝) → 𝑏 ∈ ℝ))
117116imp 409 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) → 𝑏 ∈ ℝ)
118 oveq1 7162 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → (𝑦↑2) = (𝑏↑2))
119118oveq2d 7171 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → (𝐴 · (𝑦↑2)) = (𝐴 · (𝑏↑2)))
120 oveq2 7163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑏 → (𝐵 · 𝑦) = (𝐵 · 𝑏))
121120oveq1d 7170 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑏 → ((𝐵 · 𝑦) + 𝐶) = ((𝐵 · 𝑏) + 𝐶))
122119, 121oveq12d 7173 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑏 → ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)))
123122eqeq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑏 → (((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0 ↔ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0))
124123adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) ∧ 𝑦 = 𝑏) → (((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0 ↔ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0))
125117, 124rspcedv 3615 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) → (((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0 → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0))
126125adantr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → (((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0 → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0))
127126adantld 493 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → ((((𝐴 · (𝑎↑2)) + ((𝐵 · 𝑎) + 𝐶)) = 0 ∧ ((𝐴 · (𝑏↑2)) + ((𝐵 · 𝑏) + 𝐶)) = 0) → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0))
128111, 127sylbid 242 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) ∧ (𝑎𝑏𝑝 = {𝑎, 𝑏})) → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0))
129128ex 415 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ 𝒫 ℝ) ∧ (𝑎𝑝𝑏𝑝)) → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0)))
130129rexlimdvva 3294 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ 𝒫 ℝ) → (∃𝑎𝑝𝑏𝑝 (𝑎𝑏𝑝 = {𝑎, 𝑏}) → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0)))
13192, 130sylbid 242 . . . . . . . . . . 11 ((𝜑𝑝 ∈ 𝒫 ℝ) → ((♯‘𝑝) = 2 → (∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0)))
132131impd 413 . . . . . . . . . 10 ((𝜑𝑝 ∈ 𝒫 ℝ) → (((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0))
133132rexlimdva 3284 . . . . . . . . 9 (𝜑 → (∃𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) → ∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0))
1341, 4, 6, 9, 17requad01 43785 . . . . . . . . 9 (𝜑 → (∃𝑦 ∈ ℝ ((𝐴 · (𝑦↑2)) + ((𝐵 · 𝑦) + 𝐶)) = 0 ↔ 0 ≤ 𝐷))
135133, 134sylibd 241 . . . . . . . 8 (𝜑 → (∃𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) → 0 ≤ 𝐷))
136135con3d 155 . . . . . . 7 (𝜑 → (¬ 0 ≤ 𝐷 → ¬ ∃𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)))
137136impcom 410 . . . . . 6 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
138 reurex 3431 . . . . . 6 (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) → ∃𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
139137, 138nsyl 142 . . . . 5 ((¬ 0 ≤ 𝐷𝜑) → ¬ ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))
140139pm2.21d 121 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) → 0 < 𝐷))
141 0red 10643 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
142 ltle 10728 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 < 𝐷 → 0 ≤ 𝐷))
143141, 35, 142syl2anc 586 . . . . . . 7 (𝜑 → (0 < 𝐷 → 0 ≤ 𝐷))
144 pm2.24 124 . . . . . . 7 (0 ≤ 𝐷 → (¬ 0 ≤ 𝐷 → ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)))
145143, 144syl6 35 . . . . . 6 (𝜑 → (0 < 𝐷 → (¬ 0 ≤ 𝐷 → ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))))
146145com23 86 . . . . 5 (𝜑 → (¬ 0 ≤ 𝐷 → (0 < 𝐷 → ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0))))
147146impcom 410 . . . 4 ((¬ 0 ≤ 𝐷𝜑) → (0 < 𝐷 → ∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0)))
148140, 147impbid 214 . . 3 ((¬ 0 ≤ 𝐷𝜑) → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷))
149148ex 415 . 2 (¬ 0 ≤ 𝐷 → (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)))
15090, 149pm2.61i 184 1 (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  𝒫 cpw 4538  {cpr 4568   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869  -cneg 10870   / cdiv 11296  2c2 11691  4c4 11693  cexp 13428  chash 13689  csqrt 14591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594
This theorem is referenced by:  itscnhlinecirc02p  44771
  Copyright terms: Public domain W3C validator