Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phrel | Structured version Visualization version GIF version |
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phrel | ⊢ Rel CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnv 29225 | . . 3 ⊢ (𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec) | |
2 | 1 | ssriv 3930 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
3 | nvrel 29013 | . 2 ⊢ Rel NrmCVec | |
4 | relss 5703 | . 2 ⊢ (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CPreHilOLD |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 Rel wrel 5605 NrmCVeccnv 28995 CPreHilOLDccphlo 29223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 df-rel 5607 df-oprab 7311 df-nv 29003 df-ph 29224 |
This theorem is referenced by: phop 29229 |
Copyright terms: Public domain | W3C validator |