![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phrel | Structured version Visualization version GIF version |
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phrel | ⊢ Rel CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnv 30846 | . . 3 ⊢ (𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec) | |
2 | 1 | ssriv 4012 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
3 | nvrel 30634 | . 2 ⊢ Rel NrmCVec | |
4 | relss 5805 | . 2 ⊢ (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CPreHilOLD |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 Rel wrel 5705 NrmCVeccnv 30616 CPreHilOLDccphlo 30844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-oprab 7452 df-nv 30624 df-ph 30845 |
This theorem is referenced by: phop 30850 |
Copyright terms: Public domain | W3C validator |