| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phrel | ⊢ Rel CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnv 30789 | . . 3 ⊢ (𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec) | |
| 2 | 1 | ssriv 3938 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
| 3 | nvrel 30577 | . 2 ⊢ Rel NrmCVec | |
| 4 | relss 5722 | . 2 ⊢ (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CPreHilOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 Rel wrel 5621 NrmCVeccnv 30559 CPreHilOLDccphlo 30787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 df-rel 5623 df-oprab 7350 df-nv 30567 df-ph 30788 |
| This theorem is referenced by: phop 30793 |
| Copyright terms: Public domain | W3C validator |