Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phrel | Structured version Visualization version GIF version |
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phrel | ⊢ Rel CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnv 29155 | . . 3 ⊢ (𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec) | |
2 | 1 | ssriv 3929 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
3 | nvrel 28943 | . 2 ⊢ Rel NrmCVec | |
4 | relss 5690 | . 2 ⊢ (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CPreHilOLD |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3891 Rel wrel 5593 NrmCVeccnv 28925 CPreHilOLDccphlo 29153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-opab 5141 df-xp 5594 df-rel 5595 df-oprab 7272 df-nv 28933 df-ph 29154 |
This theorem is referenced by: phop 29159 |
Copyright terms: Public domain | W3C validator |