MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phrel Structured version   Visualization version   GIF version

Theorem phrel 29226
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
phrel Rel CPreHilOLD

Proof of Theorem phrel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phnv 29225 . . 3 (𝑥 ∈ CPreHilOLD𝑥 ∈ NrmCVec)
21ssriv 3930 . 2 CPreHilOLD ⊆ NrmCVec
3 nvrel 29013 . 2 Rel NrmCVec
4 relss 5703 . 2 (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD))
52, 3, 4mp2 9 1 Rel CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wss 3892  Rel wrel 5605  NrmCVeccnv 28995  CPreHilOLDccphlo 29223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-opab 5144  df-xp 5606  df-rel 5607  df-oprab 7311  df-nv 29003  df-ph 29224
This theorem is referenced by:  phop  29229
  Copyright terms: Public domain W3C validator