| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phrel | Structured version Visualization version GIF version | ||
| Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phrel | ⊢ Rel CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnv 30743 | . . 3 ⊢ (𝑥 ∈ CPreHilOLD → 𝑥 ∈ NrmCVec) | |
| 2 | 1 | ssriv 3950 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
| 3 | nvrel 30531 | . 2 ⊢ Rel NrmCVec | |
| 4 | relss 5744 | . 2 ⊢ (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Rel CPreHilOLD |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 Rel wrel 5643 NrmCVeccnv 30513 CPreHilOLDccphlo 30741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-rel 5645 df-oprab 7391 df-nv 30521 df-ph 30742 |
| This theorem is referenced by: phop 30747 |
| Copyright terms: Public domain | W3C validator |