MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phrel Structured version   Visualization version   GIF version

Theorem phrel 30068
Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
phrel Rel CPreHilOLD

Proof of Theorem phrel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phnv 30067 . . 3 (𝑥 ∈ CPreHilOLD𝑥 ∈ NrmCVec)
21ssriv 3987 . 2 CPreHilOLD ⊆ NrmCVec
3 nvrel 29855 . 2 Rel NrmCVec
4 relss 5782 . 2 (CPreHilOLD ⊆ NrmCVec → (Rel NrmCVec → Rel CPreHilOLD))
52, 3, 4mp2 9 1 Rel CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wss 3949  Rel wrel 5682  NrmCVeccnv 29837  CPreHilOLDccphlo 30065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-opab 5212  df-xp 5683  df-rel 5684  df-oprab 7413  df-nv 29845  df-ph 30066
This theorem is referenced by:  phop  30071
  Copyright terms: Public domain W3C validator