Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ph 29175 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
2 | inss1 4162 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
3 | 1, 2 | eqsstri 3955 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
4 | 3 | sseli 3917 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ran crn 5590 ‘cfv 6433 (class class class)co 7275 {coprab 7276 1c1 10872 + caddc 10874 · cmul 10876 -cneg 11206 2c2 12028 ↑cexp 13782 NrmCVeccnv 28946 CPreHilOLDccphlo 29174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-ph 29175 |
This theorem is referenced by: phrel 29177 phnvi 29178 phop 29180 isph 29184 dipdi 29205 dipassr 29208 dipsubdir 29210 dipsubdi 29211 ajval 29223 minvecolem1 29236 minvecolem2 29237 minvecolem3 29238 minvecolem4a 29239 minvecolem4b 29240 minvecolem4 29242 minvecolem5 29243 minvecolem6 29244 minvecolem7 29245 |
Copyright terms: Public domain | W3C validator |