| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ph 30715 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
| 2 | inss1 4196 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
| 3 | 1, 2 | eqsstri 3990 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
| 4 | 3 | sseli 3939 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ran crn 5632 ‘cfv 6499 (class class class)co 7369 {coprab 7370 1c1 11045 + caddc 11047 · cmul 11049 -cneg 11382 2c2 12217 ↑cexp 14002 NrmCVeccnv 30486 CPreHilOLDccphlo 30714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ss 3928 df-ph 30715 |
| This theorem is referenced by: phrel 30717 phnvi 30718 phop 30720 isph 30724 dipdi 30745 dipassr 30748 dipsubdir 30750 dipsubdi 30751 ajval 30763 minvecolem1 30776 minvecolem2 30777 minvecolem3 30778 minvecolem4a 30779 minvecolem4b 30780 minvecolem4 30782 minvecolem5 30783 minvecolem6 30784 minvecolem7 30785 |
| Copyright terms: Public domain | W3C validator |