| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ph 30792 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
| 2 | inss1 4196 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
| 3 | 1, 2 | eqsstri 3990 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
| 4 | 3 | sseli 3939 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 ran crn 5632 ‘cfv 6499 (class class class)co 7369 {coprab 7370 1c1 11045 + caddc 11047 · cmul 11049 -cneg 11382 2c2 12217 ↑cexp 14002 NrmCVeccnv 30563 CPreHilOLDccphlo 30791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ss 3928 df-ph 30792 |
| This theorem is referenced by: phrel 30794 phnvi 30795 phop 30797 isph 30801 dipdi 30822 dipassr 30825 dipsubdir 30827 dipsubdi 30828 ajval 30840 minvecolem1 30853 minvecolem2 30854 minvecolem3 30855 minvecolem4a 30856 minvecolem4b 30857 minvecolem4 30859 minvecolem5 30860 minvecolem6 30861 minvecolem7 30862 |
| Copyright terms: Public domain | W3C validator |