MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phnv Structured version   Visualization version   GIF version

Theorem phnv 30758
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
phnv (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem phnv
Dummy variables 𝑔 𝑛 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ph 30757 . . 3 CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
2 inss1 4188 . . 3 (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}) ⊆ NrmCVec
31, 2eqsstri 3982 . 2 CPreHilOLD ⊆ NrmCVec
43sseli 3931 1 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  cin 3902  ran crn 5620  cfv 6482  (class class class)co 7349  {coprab 7350  1c1 11010   + caddc 11012   · cmul 11014  -cneg 11348  2c2 12183  cexp 13968  NrmCVeccnv 30528  CPreHilOLDccphlo 30756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-in 3910  df-ss 3920  df-ph 30757
This theorem is referenced by:  phrel  30759  phnvi  30760  phop  30762  isph  30766  dipdi  30787  dipassr  30790  dipsubdir  30792  dipsubdi  30793  ajval  30805  minvecolem1  30818  minvecolem2  30819  minvecolem3  30820  minvecolem4a  30821  minvecolem4b  30822  minvecolem4  30824  minvecolem5  30825  minvecolem6  30826  minvecolem7  30827
  Copyright terms: Public domain W3C validator