Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ph 28685 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
2 | inss1 4134 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
3 | 1, 2 | eqsstri 3927 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
4 | 3 | sseli 3889 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∩ cin 3858 ran crn 5523 ‘cfv 6333 (class class class)co 7148 {coprab 7149 1c1 10566 + caddc 10568 · cmul 10570 -cneg 10899 2c2 11719 ↑cexp 13469 NrmCVeccnv 28456 CPreHilOLDccphlo 28684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-in 3866 df-ss 3876 df-ph 28685 |
This theorem is referenced by: phrel 28687 phnvi 28688 phop 28690 isph 28694 dipdi 28715 dipassr 28718 dipsubdir 28720 dipsubdi 28721 ajval 28733 minvecolem1 28746 minvecolem2 28747 minvecolem3 28748 minvecolem4a 28749 minvecolem4b 28750 minvecolem4 28752 minvecolem5 28753 minvecolem6 28754 minvecolem7 28755 |
Copyright terms: Public domain | W3C validator |