| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ph 30757 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
| 2 | inss1 4188 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
| 3 | 1, 2 | eqsstri 3982 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
| 4 | 3 | sseli 3931 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3902 ran crn 5620 ‘cfv 6482 (class class class)co 7349 {coprab 7350 1c1 11010 + caddc 11012 · cmul 11014 -cneg 11348 2c2 12183 ↑cexp 13968 NrmCVeccnv 30528 CPreHilOLDccphlo 30756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ss 3920 df-ph 30757 |
| This theorem is referenced by: phrel 30759 phnvi 30760 phop 30762 isph 30766 dipdi 30787 dipassr 30790 dipsubdir 30792 dipsubdi 30793 ajval 30805 minvecolem1 30818 minvecolem2 30819 minvecolem3 30820 minvecolem4a 30821 minvecolem4b 30822 minvecolem4 30824 minvecolem5 30825 minvecolem6 30826 minvecolem7 30827 |
| Copyright terms: Public domain | W3C validator |