MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phnv Structured version   Visualization version   GIF version

Theorem phnv 29176
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
phnv (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem phnv
Dummy variables 𝑔 𝑛 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ph 29175 . . 3 CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
2 inss1 4162 . . 3 (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}) ⊆ NrmCVec
31, 2eqsstri 3955 . 2 CPreHilOLD ⊆ NrmCVec
43sseli 3917 1 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  cin 3886  ran crn 5590  cfv 6433  (class class class)co 7275  {coprab 7276  1c1 10872   + caddc 10874   · cmul 10876  -cneg 11206  2c2 12028  cexp 13782  NrmCVeccnv 28946  CPreHilOLDccphlo 29174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-ph 29175
This theorem is referenced by:  phrel  29177  phnvi  29178  phop  29180  isph  29184  dipdi  29205  dipassr  29208  dipsubdir  29210  dipsubdi  29211  ajval  29223  minvecolem1  29236  minvecolem2  29237  minvecolem3  29238  minvecolem4a  29239  minvecolem4b  29240  minvecolem4  29242  minvecolem5  29243  minvecolem6  29244  minvecolem7  29245
  Copyright terms: Public domain W3C validator