![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phnv | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnv | ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ph 30855 | . . 3 ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | |
2 | inss1 4246 | . . 3 ⊢ (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) ⊆ NrmCVec | |
3 | 1, 2 | eqsstri 4031 | . 2 ⊢ CPreHilOLD ⊆ NrmCVec |
4 | 3 | sseli 3992 | 1 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ∩ cin 3963 ran crn 5691 ‘cfv 6566 (class class class)co 7435 {coprab 7436 1c1 11160 + caddc 11162 · cmul 11164 -cneg 11497 2c2 12325 ↑cexp 14105 NrmCVeccnv 30626 CPreHilOLDccphlo 30854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3971 df-ss 3981 df-ph 30855 |
This theorem is referenced by: phrel 30857 phnvi 30858 phop 30860 isph 30864 dipdi 30885 dipassr 30888 dipsubdir 30890 dipsubdi 30891 ajval 30903 minvecolem1 30916 minvecolem2 30917 minvecolem3 30918 minvecolem4a 30919 minvecolem4b 30920 minvecolem4 30922 minvecolem5 30923 minvecolem6 30924 minvecolem7 30925 |
Copyright terms: Public domain | W3C validator |