| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| phnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | phnv 30795 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 NrmCVeccnv 30565 CPreHilOLDccphlo 30793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 df-ph 30794 |
| This theorem is referenced by: elimph 30801 ip0i 30806 ip1ilem 30807 ip2i 30809 ipdirilem 30810 ipasslem1 30812 ipasslem2 30813 ipasslem4 30815 ipasslem5 30816 ipasslem7 30817 ipasslem8 30818 ipasslem9 30819 ipasslem10 30820 ipasslem11 30821 ip2dii 30825 pythi 30831 siilem1 30832 siilem2 30833 siii 30834 ipblnfi 30836 ip2eqi 30837 ajfuni 30840 |
| Copyright terms: Public domain | W3C validator |