| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| phnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | phnv 30716 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 NrmCVeccnv 30486 CPreHilOLDccphlo 30714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ss 3928 df-ph 30715 |
| This theorem is referenced by: elimph 30722 ip0i 30727 ip1ilem 30728 ip2i 30730 ipdirilem 30731 ipasslem1 30733 ipasslem2 30734 ipasslem4 30736 ipasslem5 30737 ipasslem7 30738 ipasslem8 30739 ipasslem9 30740 ipasslem10 30741 ipasslem11 30742 ip2dii 30746 pythi 30752 siilem1 30753 siilem2 30754 siii 30755 ipblnfi 30757 ip2eqi 30758 ajfuni 30761 |
| Copyright terms: Public domain | W3C validator |