![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
phnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | phnv 28194 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 NrmCVeccnv 27964 CPreHilOLDccphlo 28192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-in 3776 df-ss 3783 df-ph 28193 |
This theorem is referenced by: elimph 28200 ip0i 28205 ip1ilem 28206 ip2i 28208 ipdirilem 28209 ipasslem1 28211 ipasslem2 28212 ipasslem4 28214 ipasslem5 28215 ipasslem7 28216 ipasslem8 28217 ipasslem9 28218 ipasslem10 28219 ipasslem11 28220 ip2dii 28224 pythi 28230 siilem1 28231 siilem2 28232 siii 28233 ipblnfi 28236 ip2eqi 28237 ajfuni 28240 |
Copyright terms: Public domain | W3C validator |