| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| phnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | phnv 30743 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 NrmCVeccnv 30513 CPreHilOLDccphlo 30741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-ph 30742 |
| This theorem is referenced by: elimph 30749 ip0i 30754 ip1ilem 30755 ip2i 30757 ipdirilem 30758 ipasslem1 30760 ipasslem2 30761 ipasslem4 30763 ipasslem5 30764 ipasslem7 30765 ipasslem8 30766 ipasslem9 30767 ipasslem10 30768 ipasslem11 30769 ip2dii 30773 pythi 30779 siilem1 30780 siilem2 30781 siii 30782 ipblnfi 30784 ip2eqi 30785 ajfuni 30788 |
| Copyright terms: Public domain | W3C validator |