| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| phnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | phnv 30794 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 NrmCVeccnv 30564 CPreHilOLDccphlo 30792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-ph 30793 |
| This theorem is referenced by: elimph 30800 ip0i 30805 ip1ilem 30806 ip2i 30808 ipdirilem 30809 ipasslem1 30811 ipasslem2 30812 ipasslem4 30814 ipasslem5 30815 ipasslem7 30816 ipasslem8 30817 ipasslem9 30818 ipasslem10 30819 ipasslem11 30820 ip2dii 30824 pythi 30830 siilem1 30831 siilem2 30832 siii 30833 ipblnfi 30835 ip2eqi 30836 ajfuni 30839 |
| Copyright terms: Public domain | W3C validator |