Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
phnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | phnv 29225 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 NrmCVeccnv 28995 CPreHilOLDccphlo 29223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-ph 29224 |
This theorem is referenced by: elimph 29231 ip0i 29236 ip1ilem 29237 ip2i 29239 ipdirilem 29240 ipasslem1 29242 ipasslem2 29243 ipasslem4 29245 ipasslem5 29246 ipasslem7 29247 ipasslem8 29248 ipasslem9 29249 ipasslem10 29250 ipasslem11 29251 ip2dii 29255 pythi 29261 siilem1 29262 siilem2 29263 siii 29264 ipblnfi 29266 ip2eqi 29267 ajfuni 29270 |
Copyright terms: Public domain | W3C validator |