| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version | ||
| Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| phnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
| 2 | phnv 30758 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 NrmCVeccnv 30528 CPreHilOLDccphlo 30756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ss 3920 df-ph 30757 |
| This theorem is referenced by: elimph 30764 ip0i 30769 ip1ilem 30770 ip2i 30772 ipdirilem 30773 ipasslem1 30775 ipasslem2 30776 ipasslem4 30778 ipasslem5 30779 ipasslem7 30780 ipasslem8 30781 ipasslem9 30782 ipasslem10 30783 ipasslem11 30784 ip2dii 30788 pythi 30794 siilem1 30795 siilem2 30796 siii 30797 ipblnfi 30799 ip2eqi 30800 ajfuni 30803 |
| Copyright terms: Public domain | W3C validator |