Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
phnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | phnv 29155 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 NrmCVeccnv 28925 CPreHilOLDccphlo 29153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-ph 29154 |
This theorem is referenced by: elimph 29161 ip0i 29166 ip1ilem 29167 ip2i 29169 ipdirilem 29170 ipasslem1 29172 ipasslem2 29173 ipasslem4 29175 ipasslem5 29176 ipasslem7 29177 ipasslem8 29178 ipasslem9 29179 ipasslem10 29180 ipasslem11 29181 ip2dii 29185 pythi 29191 siilem1 29192 siilem2 29193 siii 29194 ipblnfi 29196 ip2eqi 29197 ajfuni 29200 |
Copyright terms: Public domain | W3C validator |