![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
phnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | phnv 30843 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 NrmCVeccnv 30613 CPreHilOLDccphlo 30841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 df-ph 30842 |
This theorem is referenced by: elimph 30849 ip0i 30854 ip1ilem 30855 ip2i 30857 ipdirilem 30858 ipasslem1 30860 ipasslem2 30861 ipasslem4 30863 ipasslem5 30864 ipasslem7 30865 ipasslem8 30866 ipasslem9 30867 ipasslem10 30868 ipasslem11 30869 ip2dii 30873 pythi 30879 siilem1 30880 siilem2 30881 siii 30882 ipblnfi 30884 ip2eqi 30885 ajfuni 30888 |
Copyright terms: Public domain | W3C validator |