![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phnvi | Structured version Visualization version GIF version |
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phnvi.1 | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
phnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | . 2 ⊢ 𝑈 ∈ CPreHilOLD | |
2 | phnv 30846 | . 2 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 NrmCVeccnv 30616 CPreHilOLDccphlo 30844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-ph 30845 |
This theorem is referenced by: elimph 30852 ip0i 30857 ip1ilem 30858 ip2i 30860 ipdirilem 30861 ipasslem1 30863 ipasslem2 30864 ipasslem4 30866 ipasslem5 30867 ipasslem7 30868 ipasslem8 30869 ipasslem9 30870 ipasslem10 30871 ipasslem11 30872 ip2dii 30876 pythi 30882 siilem1 30883 siilem2 30884 siii 30885 ipblnfi 30887 ip2eqi 30888 ajfuni 30891 |
Copyright terms: Public domain | W3C validator |