MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phnvi Structured version   Visualization version   GIF version

Theorem phnvi 30760
Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
phnvi.1 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
phnvi 𝑈 ∈ NrmCVec

Proof of Theorem phnvi
StepHypRef Expression
1 phnvi.1 . 2 𝑈 ∈ CPreHilOLD
2 phnv 30758 . 2 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2ax-mp 5 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  NrmCVeccnv 30528  CPreHilOLDccphlo 30756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-in 3910  df-ss 3920  df-ph 30757
This theorem is referenced by:  elimph  30764  ip0i  30769  ip1ilem  30770  ip2i  30772  ipdirilem  30773  ipasslem1  30775  ipasslem2  30776  ipasslem4  30778  ipasslem5  30779  ipasslem7  30780  ipasslem8  30781  ipasslem9  30782  ipasslem10  30783  ipasslem11  30784  ip2dii  30788  pythi  30794  siilem1  30795  siilem2  30796  siii  30797  ipblnfi  30799  ip2eqi  30800  ajfuni  30803
  Copyright terms: Public domain W3C validator