MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.21ddne Structured version   Visualization version   GIF version

Theorem pm2.21ddne 3021
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2940 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 194 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wne 2935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-ne 2936
This theorem is referenced by:  cshwshashlem2  17057  dprdsn  19984  ablsimpgfind  20058  coseq00topi  26424  tglndim0  28420  ncolncol  28437  footne  28514  s3f1  32652  cycpmco2lem7  32831  linds2eq  33036  ig1pmindeg  33204  sgnsub  34100  sgnmulsgn  34105  sgnmulsgp  34106  pconnconn  34777  irrdifflemf  36740  osumcllem11N  39376  dochexmidlem8  40877  sticksstones22  41572  exp11d  41807  remul01  41884  fnchoice  44314
  Copyright terms: Public domain W3C validator