| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2931 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: cshwshashlem2 17074 dprdsn 19975 ablsimpgfind 20049 coseq00topi 26418 tglndim0 28563 ncolncol 28580 footne 28657 sgnsub 32769 sgnmulsgn 32774 sgnmulsgp 32775 s3f1 32875 chnub 32945 cycpmco2lem7 33096 fracfld 33265 linds2eq 33359 dfufd2lem 33527 ply1dg3rt0irred 33558 ig1pmindeg 33574 pconnconn 35225 irrdifflemf 37320 osumcllem11N 39967 dochexmidlem8 41468 sticksstones22 42163 exp11d 42321 remul01 42402 fnchoice 45030 |
| Copyright terms: Public domain | W3C validator |