| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2933 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: cshwshashlem2 17005 chnub 18525 chnccat 18529 dprdsn 19948 ablsimpgfind 20022 coseq00topi 26436 tglndim0 28605 ncolncol 28622 footne 28699 sgnsub 32815 sgnmulsgn 32820 sgnmulsgp 32821 s3f1 32923 cycpmco2lem7 33096 fracfld 33269 linds2eq 33341 dfufd2lem 33509 ply1dg3rt0irred 33541 ig1pmindeg 33557 esplymhp 33584 pconnconn 35263 irrdifflemf 37358 osumcllem11N 40004 dochexmidlem8 41505 sticksstones22 42200 exp11d 42358 remul01 42439 fnchoice 45065 |
| Copyright terms: Public domain | W3C validator |