MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.21ddne Structured version   Visualization version   GIF version

Theorem pm2.21ddne 3009
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2930 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 195 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  cshwshashlem2  17026  dprdsn  19935  ablsimpgfind  20009  coseq00topi  26427  tglndim0  28592  ncolncol  28609  footne  28686  sgnsub  32795  sgnmulsgn  32800  sgnmulsgp  32801  s3f1  32901  chnub  32967  cycpmco2lem7  33087  fracfld  33257  linds2eq  33328  dfufd2lem  33496  ply1dg3rt0irred  33527  ig1pmindeg  33543  pconnconn  35203  irrdifflemf  37298  osumcllem11N  39945  dochexmidlem8  41446  sticksstones22  42141  exp11d  42299  remul01  42380  fnchoice  45007
  Copyright terms: Public domain W3C validator