| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2934 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2930 |
| This theorem is referenced by: cshwshashlem2 17010 chnub 18530 chnccat 18534 dprdsn 19952 ablsimpgfind 20026 coseq00topi 26439 tglndim0 28608 ncolncol 28625 footne 28702 sgnsub 32825 sgnmulsgn 32830 sgnmulsgp 32831 s3f1 32935 cycpmco2lem7 33108 fracfld 33281 linds2eq 33353 dfufd2lem 33521 ply1dg3rt0irred 33553 ig1pmindeg 33569 esplymhp 33608 pconnconn 35296 irrdifflemf 37390 osumcllem11N 40085 dochexmidlem8 41586 sticksstones22 42281 exp11d 42444 remul01 42525 fnchoice 45150 |
| Copyright terms: Public domain | W3C validator |