![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pm2.21ddne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | neneqd 2945 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
4 | 1, 3 | pm2.21dd 194 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: cshwshashlem2 17032 dprdsn 19908 ablsimpgfind 19982 coseq00topi 26019 tglndim0 27918 ncolncol 27935 footne 28012 s3f1 32151 cycpmco2lem7 32332 linds2eq 32542 ig1pmindeg 32718 sgnsub 33612 sgnmulsgn 33617 sgnmulsgp 33618 pconnconn 34291 irrdifflemf 36298 osumcllem11N 38929 dochexmidlem8 40430 sticksstones22 41076 exp11d 41304 remul01 41368 fnchoice 43801 |
Copyright terms: Public domain | W3C validator |