| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2938 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: cshwshashlem2 17121 dprdsn 20024 ablsimpgfind 20098 coseq00topi 26468 tglndim0 28613 ncolncol 28630 footne 28707 sgnsub 32821 sgnmulsgn 32826 sgnmulsgp 32827 s3f1 32927 chnub 32997 cycpmco2lem7 33148 fracfld 33307 linds2eq 33401 dfufd2lem 33569 ply1dg3rt0irred 33600 ig1pmindeg 33616 pconnconn 35258 irrdifflemf 37348 osumcllem11N 39990 dochexmidlem8 41491 sticksstones22 42186 exp11d 42342 remul01 42417 fnchoice 45020 |
| Copyright terms: Public domain | W3C validator |