![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pm2.21ddne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | neneqd 2940 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
4 | 1, 3 | pm2.21dd 194 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ≠ wne 2935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2936 |
This theorem is referenced by: cshwshashlem2 17057 dprdsn 19984 ablsimpgfind 20058 coseq00topi 26424 tglndim0 28420 ncolncol 28437 footne 28514 s3f1 32652 cycpmco2lem7 32831 linds2eq 33036 ig1pmindeg 33204 sgnsub 34100 sgnmulsgn 34105 sgnmulsgp 34106 pconnconn 34777 irrdifflemf 36740 osumcllem11N 39376 dochexmidlem8 40877 sticksstones22 41572 exp11d 41807 remul01 41884 fnchoice 44314 |
Copyright terms: Public domain | W3C validator |