![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pm2.21ddne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | neneqd 2951 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: cshwshashlem2 17144 dprdsn 20080 ablsimpgfind 20154 coseq00topi 26562 tglndim0 28655 ncolncol 28672 footne 28749 s3f1 32913 chnub 32984 cycpmco2lem7 33125 fracfld 33275 linds2eq 33374 dfufd2lem 33542 ply1dg3rt0irred 33572 ig1pmindeg 33587 sgnsub 34509 sgnmulsgn 34514 sgnmulsgp 34515 pconnconn 35199 irrdifflemf 37291 osumcllem11N 39923 dochexmidlem8 41424 sticksstones22 42125 exp11d 42313 remul01 42383 fnchoice 44929 |
Copyright terms: Public domain | W3C validator |