MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.21ddne Structured version   Visualization version   GIF version

Theorem pm2.21ddne 3009
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2930 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 195 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2926
This theorem is referenced by:  cshwshashlem2  17067  dprdsn  19968  ablsimpgfind  20042  coseq00topi  26411  tglndim0  28556  ncolncol  28573  footne  28650  sgnsub  32762  sgnmulsgn  32767  sgnmulsgp  32768  s3f1  32868  chnub  32938  cycpmco2lem7  33089  fracfld  33258  linds2eq  33352  dfufd2lem  33520  ply1dg3rt0irred  33551  ig1pmindeg  33567  pconnconn  35218  irrdifflemf  37313  osumcllem11N  39960  dochexmidlem8  41461  sticksstones22  42156  exp11d  42314  remul01  42395  fnchoice  45023
  Copyright terms: Public domain W3C validator