| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2936 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2932 |
| This theorem is referenced by: cshwshashlem2 17117 dprdsn 20025 ablsimpgfind 20099 coseq00topi 26481 tglndim0 28574 ncolncol 28591 footne 28668 s3f1 32876 chnub 32946 cycpmco2lem7 33096 fracfld 33255 linds2eq 33349 dfufd2lem 33517 ply1dg3rt0irred 33547 ig1pmindeg 33562 sgnsub 34522 sgnmulsgn 34527 sgnmulsgp 34528 pconnconn 35211 irrdifflemf 37301 osumcllem11N 39943 dochexmidlem8 41444 sticksstones22 42144 exp11d 42340 remul01 42416 fnchoice 45006 |
| Copyright terms: Public domain | W3C validator |