MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.21ddne Structured version   Visualization version   GIF version

Theorem pm2.21ddne 3013
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2934 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 195 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2930
This theorem is referenced by:  cshwshashlem2  17010  chnub  18530  chnccat  18534  dprdsn  19952  ablsimpgfind  20026  coseq00topi  26439  tglndim0  28608  ncolncol  28625  footne  28702  sgnsub  32825  sgnmulsgn  32830  sgnmulsgp  32831  s3f1  32935  cycpmco2lem7  33108  fracfld  33281  linds2eq  33353  dfufd2lem  33521  ply1dg3rt0irred  33553  ig1pmindeg  33569  esplymhp  33608  pconnconn  35296  irrdifflemf  37390  osumcllem11N  40085  dochexmidlem8  41586  sticksstones22  42281  exp11d  42444  remul01  42525  fnchoice  45150
  Copyright terms: Public domain W3C validator