| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2930 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: cshwshashlem2 17026 dprdsn 19935 ablsimpgfind 20009 coseq00topi 26427 tglndim0 28592 ncolncol 28609 footne 28686 sgnsub 32795 sgnmulsgn 32800 sgnmulsgp 32801 s3f1 32901 chnub 32967 cycpmco2lem7 33087 fracfld 33257 linds2eq 33328 dfufd2lem 33496 ply1dg3rt0irred 33527 ig1pmindeg 33543 pconnconn 35203 irrdifflemf 37298 osumcllem11N 39945 dochexmidlem8 41446 sticksstones22 42141 exp11d 42299 remul01 42380 fnchoice 45007 |
| Copyright terms: Public domain | W3C validator |