Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pm2.21ddne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | neneqd 2949 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
4 | 1, 3 | pm2.21dd 194 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: cshwshashlem2 16779 dprdsn 19620 ablsimpgfind 19694 coseq00topi 25640 tglndim0 26971 ncolncol 26988 footne 27065 s3f1 31200 cycpmco2lem7 31378 linds2eq 31554 sgnsub 32490 sgnmulsgn 32495 sgnmulsgp 32496 pconnconn 33172 irrdifflemf 35475 osumcllem11N 37959 dochexmidlem8 39460 sticksstones22 40104 exp11d 40305 remul01 40370 fnchoice 42525 |
Copyright terms: Public domain | W3C validator |