| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version | ||
| Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| pm2.21ddne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 3 | 2 | neneqd 2930 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 4 | 1, 3 | pm2.21dd 195 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: cshwshashlem2 17067 dprdsn 19968 ablsimpgfind 20042 coseq00topi 26411 tglndim0 28556 ncolncol 28573 footne 28650 sgnsub 32762 sgnmulsgn 32767 sgnmulsgp 32768 s3f1 32868 chnub 32938 cycpmco2lem7 33089 fracfld 33258 linds2eq 33352 dfufd2lem 33520 ply1dg3rt0irred 33551 ig1pmindeg 33567 pconnconn 35218 irrdifflemf 37313 osumcllem11N 39960 dochexmidlem8 41461 sticksstones22 42156 exp11d 42314 remul01 42395 fnchoice 45023 |
| Copyright terms: Public domain | W3C validator |