![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.21ddne | Structured version Visualization version GIF version |
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
pm2.21ddne.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
pm2.21ddne.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
pm2.21ddne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21ddne.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pm2.21ddne.2 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
3 | 2 | neneqd 2946 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
4 | 1, 3 | pm2.21dd 194 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: cshwshashlem2 17030 dprdsn 19906 ablsimpgfind 19980 coseq00topi 26012 tglndim0 27880 ncolncol 27897 footne 27974 s3f1 32113 cycpmco2lem7 32291 linds2eq 32497 ig1pmindeg 32671 sgnsub 33543 sgnmulsgn 33548 sgnmulsgp 33549 pconnconn 34222 irrdifflemf 36206 osumcllem11N 38837 dochexmidlem8 40338 sticksstones22 40984 exp11d 41216 remul01 41280 fnchoice 43713 |
Copyright terms: Public domain | W3C validator |