MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.21ddne Structured version   Visualization version   GIF version

Theorem pm2.21ddne 3015
Description: A contradiction implies anything. Equality/inequality deduction form. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
pm2.21ddne.1 (𝜑𝐴 = 𝐵)
pm2.21ddne.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
pm2.21ddne (𝜑𝜓)

Proof of Theorem pm2.21ddne
StepHypRef Expression
1 pm2.21ddne.1 . 2 (𝜑𝐴 = 𝐵)
2 pm2.21ddne.2 . . 3 (𝜑𝐴𝐵)
32neneqd 2936 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
41, 3pm2.21dd 195 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-ne 2932
This theorem is referenced by:  cshwshashlem2  17117  dprdsn  20025  ablsimpgfind  20099  coseq00topi  26481  tglndim0  28574  ncolncol  28591  footne  28668  s3f1  32876  chnub  32946  cycpmco2lem7  33096  fracfld  33255  linds2eq  33349  dfufd2lem  33517  ply1dg3rt0irred  33547  ig1pmindeg  33562  sgnsub  34522  sgnmulsgn  34527  sgnmulsgp  34528  pconnconn  35211  irrdifflemf  37301  osumcllem11N  39943  dochexmidlem8  41444  sticksstones22  42144  exp11d  42340  remul01  42416  fnchoice  45006
  Copyright terms: Public domain W3C validator