Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 414 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3029 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2945 |
This theorem is referenced by: pwdom 8925 cantnfle 9438 cantnflem1 9456 cantnf 9460 djulepw 9957 infmap2 9983 zornn0g 10270 ttukeylem6 10279 msqge0 11505 xrsupsslem 13050 xrinfmsslem 13051 fzoss1 13423 swrdcl 14367 pfxcl 14399 abs1m 15056 fsumcvg3 15450 bezoutlem4 16259 gcdmultiplezOLD 16270 dvdssq 16281 lcmid 16323 pcdvdsb 16579 pcgcd1 16587 pc2dvds 16589 pcaddlem 16598 qexpz 16611 4sqlem19 16673 prmlem1a 16817 gsumwsubmcl 18484 gsumccatOLD 18488 gsumccat 18489 gsumwmhm 18493 cntzsdrg 20079 zringlpir 20698 mretopd 22252 ufildom1 23086 alexsublem 23204 nmolb2d 23891 nmoi 23901 nmoix 23902 ipcau2 24407 mdegcl 25243 ply1divex 25310 ig1pcl 25349 dgrmulc 25441 mulcxplem 25848 vmacl 26276 efvmacl 26278 vmalelog 26362 padicabv 26787 nmlnoubi 29167 nmblolbii 29170 blocnilem 29175 blocni 29176 ubthlem1 29241 nmbdoplbi 30395 cnlnadjlem7 30444 branmfn 30476 pjbdlni 30520 shatomistici 30732 segcon2 34416 lssats 37033 ps-1 37498 3atlem5 37508 lplnnle2at 37562 2llnm3N 37590 lvolnle3at 37603 4atex2 38098 cdlemd5 38223 cdleme21k 38359 cdlemg33b 38728 mapdrvallem2 39666 mapdhcl 39748 hdmapval3N 39859 hdmap10 39861 hdmaprnlem17N 39884 hdmap14lem2a 39888 hdmaplkr 39934 hgmapvv 39947 |
Copyright terms: Public domain | W3C validator |