| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | pm2.61ine 3008 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 |
| This theorem is referenced by: pwdom 9046 cantnfle 9567 cantnflem1 9585 cantnf 9589 djulepw 10087 infmap2 10111 zornn0g 10399 ttukeylem6 10408 msqge0 11641 xrsupsslem 13209 xrinfmsslem 13210 fzoss1 13589 swrdcl 14552 pfxcl 14584 abs1m 15243 fsumcvg3 15636 bezoutlem4 16453 dvdssq 16478 lcmid 16520 pcdvdsb 16781 pcgcd1 16789 pc2dvds 16791 pcaddlem 16800 qexpz 16813 4sqlem19 16875 prmlem1a 17018 gsumwsubmcl 18711 gsumccat 18715 gsumwmhm 18719 cntzsdrg 20687 zringlpir 21374 psdmul 22051 mretopd 22977 ufildom1 23811 alexsublem 23929 nmolb2d 24604 nmoi 24614 nmoix 24615 ipcau2 25132 mdegcl 25972 ply1divex 26040 ig1pcl 26082 dgrmulc 26175 mulcxplem 26591 vmacl 27026 efvmacl 27028 vmalelog 27114 padicabv 27539 nmlnoubi 30740 nmblolbii 30743 blocnilem 30748 blocni 30749 ubthlem1 30814 nmbdoplbi 31968 cnlnadjlem7 32017 branmfn 32049 pjbdlni 32093 shatomistici 32305 segcon2 36083 lssats 38995 ps-1 39460 3atlem5 39470 lplnnle2at 39524 2llnm3N 39552 lvolnle3at 39565 4atex2 40060 cdlemd5 40185 cdleme21k 40321 cdlemg33b 40690 mapdrvallem2 41628 mapdhcl 41710 hdmapval3N 41821 hdmap10 41823 hdmaprnlem17N 41846 hdmap14lem2a 41850 hdmaplkr 41896 hgmapvv 41909 explt1d 42300 fiabv 42513 |
| Copyright terms: Public domain | W3C validator |