| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | pm2.61ine 3008 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 |
| This theorem is referenced by: pwdom 9093 cantnfle 9624 cantnflem1 9642 cantnf 9646 djulepw 10146 infmap2 10170 zornn0g 10458 ttukeylem6 10467 msqge0 11699 xrsupsslem 13267 xrinfmsslem 13268 fzoss1 13647 swrdcl 14610 pfxcl 14642 abs1m 15302 fsumcvg3 15695 bezoutlem4 16512 dvdssq 16537 lcmid 16579 pcdvdsb 16840 pcgcd1 16848 pc2dvds 16850 pcaddlem 16859 qexpz 16872 4sqlem19 16934 prmlem1a 17077 gsumwsubmcl 18764 gsumccat 18768 gsumwmhm 18772 cntzsdrg 20711 zringlpir 21377 psdmul 22053 mretopd 22979 ufildom1 23813 alexsublem 23931 nmolb2d 24606 nmoi 24616 nmoix 24617 ipcau2 25134 mdegcl 25974 ply1divex 26042 ig1pcl 26084 dgrmulc 26177 mulcxplem 26593 vmacl 27028 efvmacl 27030 vmalelog 27116 padicabv 27541 nmlnoubi 30725 nmblolbii 30728 blocnilem 30733 blocni 30734 ubthlem1 30799 nmbdoplbi 31953 cnlnadjlem7 32002 branmfn 32034 pjbdlni 32078 shatomistici 32290 segcon2 36093 lssats 39005 ps-1 39471 3atlem5 39481 lplnnle2at 39535 2llnm3N 39563 lvolnle3at 39576 4atex2 40071 cdlemd5 40196 cdleme21k 40332 cdlemg33b 40701 mapdrvallem2 41639 mapdhcl 41721 hdmapval3N 41832 hdmap10 41834 hdmaprnlem17N 41857 hdmap14lem2a 41861 hdmaplkr 41907 hgmapvv 41920 explt1d 42311 fiabv 42524 |
| Copyright terms: Public domain | W3C validator |