![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3031 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2947 |
This theorem is referenced by: pwdom 9195 cantnfle 9740 cantnflem1 9758 cantnf 9762 djulepw 10262 infmap2 10286 zornn0g 10574 ttukeylem6 10583 msqge0 11811 xrsupsslem 13369 xrinfmsslem 13370 fzoss1 13743 swrdcl 14693 pfxcl 14725 abs1m 15384 fsumcvg3 15777 bezoutlem4 16589 dvdssq 16614 lcmid 16656 pcdvdsb 16916 pcgcd1 16924 pc2dvds 16926 pcaddlem 16935 qexpz 16948 4sqlem19 17010 prmlem1a 17154 gsumwsubmcl 18872 gsumccat 18876 gsumwmhm 18880 cntzsdrg 20825 zringlpir 21501 psdmul 22193 mretopd 23121 ufildom1 23955 alexsublem 24073 nmolb2d 24760 nmoi 24770 nmoix 24771 ipcau2 25287 mdegcl 26128 ply1divex 26196 ig1pcl 26238 dgrmulc 26331 mulcxplem 26744 vmacl 27179 efvmacl 27181 vmalelog 27267 padicabv 27692 nmlnoubi 30828 nmblolbii 30831 blocnilem 30836 blocni 30837 ubthlem1 30902 nmbdoplbi 32056 cnlnadjlem7 32105 branmfn 32137 pjbdlni 32181 shatomistici 32393 segcon2 36069 lssats 38968 ps-1 39434 3atlem5 39444 lplnnle2at 39498 2llnm3N 39526 lvolnle3at 39539 4atex2 40034 cdlemd5 40159 cdleme21k 40295 cdlemg33b 40664 mapdrvallem2 41602 mapdhcl 41684 hdmapval3N 41795 hdmap10 41797 hdmaprnlem17N 41820 hdmap14lem2a 41824 hdmaplkr 41870 hgmapvv 41883 explt1d 42310 fiabv 42491 |
Copyright terms: Public domain | W3C validator |