| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | pm2.61ine 3009 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2927 |
| This theorem is referenced by: pwdom 9099 cantnfle 9631 cantnflem1 9649 cantnf 9653 djulepw 10153 infmap2 10177 zornn0g 10465 ttukeylem6 10474 msqge0 11706 xrsupsslem 13274 xrinfmsslem 13275 fzoss1 13654 swrdcl 14617 pfxcl 14649 abs1m 15309 fsumcvg3 15702 bezoutlem4 16519 dvdssq 16544 lcmid 16586 pcdvdsb 16847 pcgcd1 16855 pc2dvds 16857 pcaddlem 16866 qexpz 16879 4sqlem19 16941 prmlem1a 17084 gsumwsubmcl 18771 gsumccat 18775 gsumwmhm 18779 cntzsdrg 20718 zringlpir 21384 psdmul 22060 mretopd 22986 ufildom1 23820 alexsublem 23938 nmolb2d 24613 nmoi 24623 nmoix 24624 ipcau2 25141 mdegcl 25981 ply1divex 26049 ig1pcl 26091 dgrmulc 26184 mulcxplem 26600 vmacl 27035 efvmacl 27037 vmalelog 27123 padicabv 27548 nmlnoubi 30732 nmblolbii 30735 blocnilem 30740 blocni 30741 ubthlem1 30806 nmbdoplbi 31960 cnlnadjlem7 32009 branmfn 32041 pjbdlni 32085 shatomistici 32297 segcon2 36100 lssats 39012 ps-1 39478 3atlem5 39488 lplnnle2at 39542 2llnm3N 39570 lvolnle3at 39583 4atex2 40078 cdlemd5 40203 cdleme21k 40339 cdlemg33b 40708 mapdrvallem2 41646 mapdhcl 41728 hdmapval3N 41839 hdmap10 41841 hdmaprnlem17N 41864 hdmap14lem2a 41868 hdmaplkr 41914 hgmapvv 41927 explt1d 42318 fiabv 42531 |
| Copyright terms: Public domain | W3C validator |