| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | pm2.61ine 3008 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2926 |
| This theorem is referenced by: pwdom 9070 cantnfle 9600 cantnflem1 9618 cantnf 9622 djulepw 10122 infmap2 10146 zornn0g 10434 ttukeylem6 10443 msqge0 11675 xrsupsslem 13243 xrinfmsslem 13244 fzoss1 13623 swrdcl 14586 pfxcl 14618 abs1m 15278 fsumcvg3 15671 bezoutlem4 16488 dvdssq 16513 lcmid 16555 pcdvdsb 16816 pcgcd1 16824 pc2dvds 16826 pcaddlem 16835 qexpz 16848 4sqlem19 16910 prmlem1a 17053 gsumwsubmcl 18746 gsumccat 18750 gsumwmhm 18754 cntzsdrg 20722 zringlpir 21409 psdmul 22086 mretopd 23012 ufildom1 23846 alexsublem 23964 nmolb2d 24639 nmoi 24649 nmoix 24650 ipcau2 25167 mdegcl 26007 ply1divex 26075 ig1pcl 26117 dgrmulc 26210 mulcxplem 26626 vmacl 27061 efvmacl 27063 vmalelog 27149 padicabv 27574 nmlnoubi 30775 nmblolbii 30778 blocnilem 30783 blocni 30784 ubthlem1 30849 nmbdoplbi 32003 cnlnadjlem7 32052 branmfn 32084 pjbdlni 32128 shatomistici 32340 segcon2 36086 lssats 38998 ps-1 39464 3atlem5 39474 lplnnle2at 39528 2llnm3N 39556 lvolnle3at 39569 4atex2 40064 cdlemd5 40189 cdleme21k 40325 cdlemg33b 40694 mapdrvallem2 41632 mapdhcl 41714 hdmapval3N 41825 hdmap10 41827 hdmaprnlem17N 41850 hdmap14lem2a 41854 hdmaplkr 41900 hgmapvv 41913 explt1d 42304 fiabv 42517 |
| Copyright terms: Public domain | W3C validator |