| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | pm2.61ine 3015 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2933 |
| This theorem is referenced by: pwdom 9141 cantnfle 9683 cantnflem1 9701 cantnf 9705 djulepw 10205 infmap2 10229 zornn0g 10517 ttukeylem6 10526 msqge0 11756 xrsupsslem 13321 xrinfmsslem 13322 fzoss1 13701 swrdcl 14661 pfxcl 14693 abs1m 15352 fsumcvg3 15743 bezoutlem4 16559 dvdssq 16584 lcmid 16626 pcdvdsb 16887 pcgcd1 16895 pc2dvds 16897 pcaddlem 16906 qexpz 16919 4sqlem19 16981 prmlem1a 17124 gsumwsubmcl 18813 gsumccat 18817 gsumwmhm 18821 cntzsdrg 20760 zringlpir 21426 psdmul 22102 mretopd 23028 ufildom1 23862 alexsublem 23980 nmolb2d 24655 nmoi 24665 nmoix 24666 ipcau2 25184 mdegcl 26024 ply1divex 26092 ig1pcl 26134 dgrmulc 26227 mulcxplem 26643 vmacl 27078 efvmacl 27080 vmalelog 27166 padicabv 27591 nmlnoubi 30723 nmblolbii 30726 blocnilem 30731 blocni 30732 ubthlem1 30797 nmbdoplbi 31951 cnlnadjlem7 32000 branmfn 32032 pjbdlni 32076 shatomistici 32288 segcon2 36069 lssats 38976 ps-1 39442 3atlem5 39452 lplnnle2at 39506 2llnm3N 39534 lvolnle3at 39547 4atex2 40042 cdlemd5 40167 cdleme21k 40303 cdlemg33b 40672 mapdrvallem2 41610 mapdhcl 41692 hdmapval3N 41803 hdmap10 41805 hdmaprnlem17N 41828 hdmap14lem2a 41832 hdmaplkr 41878 hgmapvv 41891 explt1d 42319 fiabv 42506 |
| Copyright terms: Public domain | W3C validator |