![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | imbitrrid 245 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 415 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3026 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ne 2942 |
This theorem is referenced by: pwdom 9129 cantnfle 9666 cantnflem1 9684 cantnf 9688 djulepw 10187 infmap2 10213 zornn0g 10500 ttukeylem6 10509 msqge0 11735 xrsupsslem 13286 xrinfmsslem 13287 fzoss1 13659 swrdcl 14595 pfxcl 14627 abs1m 15282 fsumcvg3 15675 bezoutlem4 16484 dvdssq 16504 lcmid 16546 pcdvdsb 16802 pcgcd1 16810 pc2dvds 16812 pcaddlem 16821 qexpz 16834 4sqlem19 16896 prmlem1a 17040 gsumwsubmcl 18718 gsumccat 18722 gsumwmhm 18726 cntzsdrg 20418 zringlpir 21037 mretopd 22596 ufildom1 23430 alexsublem 23548 nmolb2d 24235 nmoi 24245 nmoix 24246 ipcau2 24751 mdegcl 25587 ply1divex 25654 ig1pcl 25693 dgrmulc 25785 mulcxplem 26192 vmacl 26622 efvmacl 26624 vmalelog 26708 padicabv 27133 nmlnoubi 30049 nmblolbii 30052 blocnilem 30057 blocni 30058 ubthlem1 30123 nmbdoplbi 31277 cnlnadjlem7 31326 branmfn 31358 pjbdlni 31402 shatomistici 31614 segcon2 35077 lssats 37882 ps-1 38348 3atlem5 38358 lplnnle2at 38412 2llnm3N 38440 lvolnle3at 38453 4atex2 38948 cdlemd5 39073 cdleme21k 39209 cdlemg33b 39578 mapdrvallem2 40516 mapdhcl 40598 hdmapval3N 40709 hdmap10 40711 hdmaprnlem17N 40734 hdmap14lem2a 40738 hdmaplkr 40784 hgmapvv 40797 |
Copyright terms: Public domain | W3C validator |