![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | imbitrrid 245 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 412 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3023 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ne 2939 |
This theorem is referenced by: pwdom 9131 cantnfle 9668 cantnflem1 9686 cantnf 9690 djulepw 10189 infmap2 10215 zornn0g 10502 ttukeylem6 10511 msqge0 11739 xrsupsslem 13290 xrinfmsslem 13291 fzoss1 13663 swrdcl 14599 pfxcl 14631 abs1m 15286 fsumcvg3 15679 bezoutlem4 16488 dvdssq 16508 lcmid 16550 pcdvdsb 16806 pcgcd1 16814 pc2dvds 16816 pcaddlem 16825 qexpz 16838 4sqlem19 16900 prmlem1a 17044 gsumwsubmcl 18754 gsumccat 18758 gsumwmhm 18762 cntzsdrg 20561 zringlpir 21238 mretopd 22816 ufildom1 23650 alexsublem 23768 nmolb2d 24455 nmoi 24465 nmoix 24466 ipcau2 24982 mdegcl 25822 ply1divex 25889 ig1pcl 25928 dgrmulc 26021 mulcxplem 26428 vmacl 26858 efvmacl 26860 vmalelog 26944 padicabv 27369 nmlnoubi 30316 nmblolbii 30319 blocnilem 30324 blocni 30325 ubthlem1 30390 nmbdoplbi 31544 cnlnadjlem7 31593 branmfn 31625 pjbdlni 31669 shatomistici 31881 segcon2 35381 lssats 38185 ps-1 38651 3atlem5 38661 lplnnle2at 38715 2llnm3N 38743 lvolnle3at 38756 4atex2 39251 cdlemd5 39376 cdleme21k 39512 cdlemg33b 39881 mapdrvallem2 40819 mapdhcl 40901 hdmapval3N 41012 hdmap10 41014 hdmaprnlem17N 41037 hdmap14lem2a 41041 hdmaplkr 41087 hgmapvv 41100 |
Copyright terms: Public domain | W3C validator |