![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | imbitrrid 245 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 414 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3025 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2941 |
This theorem is referenced by: pwdom 9125 cantnfle 9662 cantnflem1 9680 cantnf 9684 djulepw 10183 infmap2 10209 zornn0g 10496 ttukeylem6 10505 msqge0 11731 xrsupsslem 13282 xrinfmsslem 13283 fzoss1 13655 swrdcl 14591 pfxcl 14623 abs1m 15278 fsumcvg3 15671 bezoutlem4 16480 dvdssq 16500 lcmid 16542 pcdvdsb 16798 pcgcd1 16806 pc2dvds 16808 pcaddlem 16817 qexpz 16830 4sqlem19 16892 prmlem1a 17036 gsumwsubmcl 18714 gsumccat 18718 gsumwmhm 18722 cntzsdrg 20410 zringlpir 21028 mretopd 22587 ufildom1 23421 alexsublem 23539 nmolb2d 24226 nmoi 24236 nmoix 24237 ipcau2 24742 mdegcl 25578 ply1divex 25645 ig1pcl 25684 dgrmulc 25776 mulcxplem 26183 vmacl 26611 efvmacl 26613 vmalelog 26697 padicabv 27122 nmlnoubi 30036 nmblolbii 30039 blocnilem 30044 blocni 30045 ubthlem1 30110 nmbdoplbi 31264 cnlnadjlem7 31313 branmfn 31345 pjbdlni 31389 shatomistici 31601 segcon2 35065 lssats 37870 ps-1 38336 3atlem5 38346 lplnnle2at 38400 2llnm3N 38428 lvolnle3at 38441 4atex2 38936 cdlemd5 39061 cdleme21k 39197 cdlemg33b 39566 mapdrvallem2 40504 mapdhcl 40586 hdmapval3N 40697 hdmap10 40699 hdmaprnlem17N 40722 hdmap14lem2a 40726 hdmaplkr 40772 hgmapvv 40785 |
Copyright terms: Public domain | W3C validator |