Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3027 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ne 2943 |
This theorem is referenced by: pwdom 8865 cantnfle 9359 cantnflem1 9377 cantnf 9381 djulepw 9879 infmap2 9905 zornn0g 10192 ttukeylem6 10201 msqge0 11426 xrsupsslem 12970 xrinfmsslem 12971 fzoss1 13342 swrdcl 14286 pfxcl 14318 abs1m 14975 fsumcvg3 15369 bezoutlem4 16178 gcdmultiplezOLD 16189 dvdssq 16200 lcmid 16242 pcdvdsb 16498 pcgcd1 16506 pc2dvds 16508 pcaddlem 16517 qexpz 16530 4sqlem19 16592 prmlem1a 16736 gsumwsubmcl 18390 gsumccatOLD 18394 gsumccat 18395 gsumwmhm 18399 cntzsdrg 19985 zringlpir 20601 mretopd 22151 ufildom1 22985 alexsublem 23103 nmolb2d 23788 nmoi 23798 nmoix 23799 ipcau2 24303 mdegcl 25139 ply1divex 25206 ig1pcl 25245 dgrmulc 25337 mulcxplem 25744 vmacl 26172 efvmacl 26174 vmalelog 26258 padicabv 26683 nmlnoubi 29059 nmblolbii 29062 blocnilem 29067 blocni 29068 ubthlem1 29133 nmbdoplbi 30287 cnlnadjlem7 30336 branmfn 30368 pjbdlni 30412 shatomistici 30624 segcon2 34334 lssats 36953 ps-1 37418 3atlem5 37428 lplnnle2at 37482 2llnm3N 37510 lvolnle3at 37523 4atex2 38018 cdlemd5 38143 cdleme21k 38279 cdlemg33b 38648 mapdrvallem2 39586 mapdhcl 39668 hdmapval3N 39779 hdmap10 39781 hdmaprnlem17N 39804 hdmap14lem2a 39808 hdmaplkr 39854 hgmapvv 39867 |
Copyright terms: Public domain | W3C validator |