| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
| pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
| pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
| 5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 6 | 3, 5 | pm2.61ine 3011 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2929 |
| This theorem is referenced by: pwdom 9042 cantnfle 9561 cantnflem1 9579 cantnf 9583 djulepw 10084 infmap2 10108 zornn0g 10396 ttukeylem6 10405 msqge0 11638 xrsupsslem 13206 xrinfmsslem 13207 fzoss1 13586 swrdcl 14553 pfxcl 14585 abs1m 15243 fsumcvg3 15636 bezoutlem4 16453 dvdssq 16478 lcmid 16520 pcdvdsb 16781 pcgcd1 16789 pc2dvds 16791 pcaddlem 16800 qexpz 16813 4sqlem19 16875 prmlem1a 17018 gsumwsubmcl 18745 gsumccat 18749 gsumwmhm 18753 cntzsdrg 20717 zringlpir 21404 psdmul 22081 mretopd 23007 ufildom1 23841 alexsublem 23959 nmolb2d 24633 nmoi 24643 nmoix 24644 ipcau2 25161 mdegcl 26001 ply1divex 26069 ig1pcl 26111 dgrmulc 26204 mulcxplem 26620 vmacl 27055 efvmacl 27057 vmalelog 27143 padicabv 27568 nmlnoubi 30776 nmblolbii 30779 blocnilem 30784 blocni 30785 ubthlem1 30850 nmbdoplbi 32004 cnlnadjlem7 32053 branmfn 32085 pjbdlni 32129 shatomistici 32341 segcon2 36149 lssats 39121 ps-1 39586 3atlem5 39596 lplnnle2at 39650 2llnm3N 39678 lvolnle3at 39691 4atex2 40186 cdlemd5 40311 cdleme21k 40447 cdlemg33b 40816 mapdrvallem2 41754 mapdhcl 41836 hdmapval3N 41947 hdmap10 41949 hdmaprnlem17N 41972 hdmap14lem2a 41976 hdmaplkr 42022 hgmapvv 42035 explt1d 42426 fiabv 42639 |
| Copyright terms: Public domain | W3C validator |