Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibr 245 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 414 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3028 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ne 2944 |
This theorem is referenced by: pwdom 8904 cantnfle 9417 cantnflem1 9435 cantnf 9439 djulepw 9936 infmap2 9962 zornn0g 10249 ttukeylem6 10258 msqge0 11484 xrsupsslem 13029 xrinfmsslem 13030 fzoss1 13402 swrdcl 14346 pfxcl 14378 abs1m 15035 fsumcvg3 15429 bezoutlem4 16238 gcdmultiplezOLD 16249 dvdssq 16260 lcmid 16302 pcdvdsb 16558 pcgcd1 16566 pc2dvds 16568 pcaddlem 16577 qexpz 16590 4sqlem19 16652 prmlem1a 16796 gsumwsubmcl 18463 gsumccatOLD 18467 gsumccat 18468 gsumwmhm 18472 cntzsdrg 20058 zringlpir 20677 mretopd 22231 ufildom1 23065 alexsublem 23183 nmolb2d 23870 nmoi 23880 nmoix 23881 ipcau2 24386 mdegcl 25222 ply1divex 25289 ig1pcl 25328 dgrmulc 25420 mulcxplem 25827 vmacl 26255 efvmacl 26257 vmalelog 26341 padicabv 26766 nmlnoubi 29144 nmblolbii 29147 blocnilem 29152 blocni 29153 ubthlem1 29218 nmbdoplbi 30372 cnlnadjlem7 30421 branmfn 30453 pjbdlni 30497 shatomistici 30709 segcon2 34393 lssats 37012 ps-1 37477 3atlem5 37487 lplnnle2at 37541 2llnm3N 37569 lvolnle3at 37582 4atex2 38077 cdlemd5 38202 cdleme21k 38338 cdlemg33b 38707 mapdrvallem2 39645 mapdhcl 39727 hdmapval3N 39838 hdmap10 39840 hdmaprnlem17N 39863 hdmap14lem2a 39867 hdmaplkr 39913 hgmapvv 39926 |
Copyright terms: Public domain | W3C validator |