![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61ne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 25-Nov-2019.) |
Ref | Expression |
---|---|
pm2.61ne.1 | ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) |
pm2.61ne.2 | ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) |
pm2.61ne.3 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ne.3 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ne.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
4 | pm2.61ne.2 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝜓) | |
5 | 4 | expcom 413 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
6 | 3, 5 | pm2.61ine 3022 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ne 2938 |
This theorem is referenced by: pwdom 9167 cantnfle 9708 cantnflem1 9726 cantnf 9730 djulepw 10230 infmap2 10254 zornn0g 10542 ttukeylem6 10551 msqge0 11781 xrsupsslem 13345 xrinfmsslem 13346 fzoss1 13722 swrdcl 14679 pfxcl 14711 abs1m 15370 fsumcvg3 15761 bezoutlem4 16575 dvdssq 16600 lcmid 16642 pcdvdsb 16902 pcgcd1 16910 pc2dvds 16912 pcaddlem 16921 qexpz 16934 4sqlem19 16996 prmlem1a 17140 gsumwsubmcl 18862 gsumccat 18866 gsumwmhm 18870 cntzsdrg 20819 zringlpir 21495 psdmul 22187 mretopd 23115 ufildom1 23949 alexsublem 24067 nmolb2d 24754 nmoi 24764 nmoix 24765 ipcau2 25281 mdegcl 26122 ply1divex 26190 ig1pcl 26232 dgrmulc 26325 mulcxplem 26740 vmacl 27175 efvmacl 27177 vmalelog 27263 padicabv 27688 nmlnoubi 30824 nmblolbii 30827 blocnilem 30832 blocni 30833 ubthlem1 30898 nmbdoplbi 32052 cnlnadjlem7 32101 branmfn 32133 pjbdlni 32177 shatomistici 32389 segcon2 36086 lssats 38993 ps-1 39459 3atlem5 39469 lplnnle2at 39523 2llnm3N 39551 lvolnle3at 39564 4atex2 40059 cdlemd5 40184 cdleme21k 40320 cdlemg33b 40689 mapdrvallem2 41627 mapdhcl 41709 hdmapval3N 41820 hdmap10 41822 hdmaprnlem17N 41845 hdmap14lem2a 41849 hdmaplkr 41895 hgmapvv 41908 explt1d 42336 fiabv 42522 |
Copyright terms: Public domain | W3C validator |