| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exp11d | Structured version Visualization version GIF version | ||
| Description: exp11nnd 14226 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| exp11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| exp11d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| exp11d.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| exp11d.4 | ⊢ (𝜑 → 𝑁 ≠ 0) |
| exp11d.5 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| Ref | Expression |
|---|---|
| exp11d | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 2 | exp11d.4 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 0) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 0) |
| 4 | 1, 3 | pm2.21ddne 3009 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = 𝐵) |
| 5 | exp11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
| 7 | exp11d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 10 | exp11d.5 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| 12 | 6, 8, 9, 11 | exp11nnd 14226 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ) | |
| 16 | 13 | rpcnd 12997 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 17 | 15 | nnnn0d 12503 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0) |
| 18 | 16, 17 | expcld 14111 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ) |
| 19 | 14 | rpcnd 12997 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ) |
| 20 | 19, 17 | expcld 14111 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ) |
| 21 | 13 | rpne0d 13000 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0) |
| 22 | 15 | nnzd 12556 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 23 | 16, 21, 22 | expne0d 14117 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0) |
| 24 | 14 | rpne0d 13000 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0) |
| 25 | 19, 24, 22 | expne0d 14117 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0) |
| 26 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| 27 | exp11d.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 28 | 27 | zcnd 12639 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 30 | expneg2 14035 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
| 31 | 16, 29, 17, 30 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
| 32 | expneg2 14035 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) | |
| 33 | 19, 29, 17, 32 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
| 34 | 26, 31, 33 | 3eqtr3d 2772 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁))) |
| 35 | 18, 20, 23, 25, 34 | rec11d 11979 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁)) |
| 36 | 13, 14, 15, 35 | exp11nnd 14226 | . 2 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
| 37 | elz 12531 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 38 | 27, 37 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 39 | 38 | simprd 495 | . 2 ⊢ (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 40 | 4, 12, 36, 39 | mpjao3dan 1434 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 -cneg 11406 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ℝ+crp 12951 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |