Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exp11d | Structured version Visualization version GIF version |
Description: exp11nnd 39942 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
Ref | Expression |
---|---|
exp11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
exp11d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
exp11d.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
exp11d.4 | ⊢ (𝜑 → 𝑁 ≠ 0) |
exp11d.5 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
Ref | Expression |
---|---|
exp11d | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
2 | exp11d.4 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 0) | |
3 | 2 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 0) |
4 | 1, 3 | pm2.21ddne 3019 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = 𝐵) |
5 | exp11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
6 | 5 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
7 | exp11d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
8 | 7 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
9 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
10 | exp11d.5 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
11 | 10 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
12 | 6, 8, 9, 11 | exp11nnd 39942 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
13 | 5 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
14 | 7 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
15 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ) | |
16 | 13 | rpcnd 12529 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
17 | 15 | nnnn0d 12049 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0) |
18 | 16, 17 | expcld 13615 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ) |
19 | 14 | rpcnd 12529 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ) |
20 | 19, 17 | expcld 13615 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ) |
21 | 13 | rpne0d 12532 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0) |
22 | 15 | nnzd 12180 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
23 | 16, 21, 22 | expne0d 13621 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0) |
24 | 14 | rpne0d 12532 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0) |
25 | 19, 24, 22 | expne0d 13621 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0) |
26 | 10 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
27 | exp11d.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
28 | 27 | zcnd 12182 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
29 | 28 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
30 | expneg2 13543 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
31 | 16, 29, 17, 30 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
32 | expneg2 13543 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) | |
33 | 19, 29, 17, 32 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
34 | 26, 31, 33 | 3eqtr3d 2782 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁))) |
35 | 18, 20, 23, 25, 34 | rec11d 11528 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁)) |
36 | 13, 14, 15, 35 | exp11nnd 39942 | . 2 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
37 | elz 12077 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
38 | 27, 37 | sylib 221 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
39 | 38 | simprd 499 | . 2 ⊢ (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
40 | 4, 12, 36, 39 | mpjao3dan 1432 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ w3o 1087 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 (class class class)co 7183 ℂcc 10626 ℝcr 10627 0cc0 10628 1c1 10629 -cneg 10962 / cdiv 11388 ℕcn 11729 ℕ0cn0 11989 ℤcz 12075 ℝ+crp 12485 ↑cexp 13534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-er 8333 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-div 11389 df-nn 11730 df-n0 11990 df-z 12076 df-uz 12338 df-rp 12486 df-seq 13474 df-exp 13535 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |