Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exp11d Structured version   Visualization version   GIF version

Theorem exp11d 42358
Description: exp11nnd 14165 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.)
Hypotheses
Ref Expression
exp11d.1 (𝜑𝐴 ∈ ℝ+)
exp11d.2 (𝜑𝐵 ∈ ℝ+)
exp11d.3 (𝜑𝑁 ∈ ℤ)
exp11d.4 (𝜑𝑁 ≠ 0)
exp11d.5 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
Assertion
Ref Expression
exp11d (𝜑𝐴 = 𝐵)

Proof of Theorem exp11d
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
2 exp11d.4 . . . 4 (𝜑𝑁 ≠ 0)
32adantr 480 . . 3 ((𝜑𝑁 = 0) → 𝑁 ≠ 0)
41, 3pm2.21ddne 3012 . 2 ((𝜑𝑁 = 0) → 𝐴 = 𝐵)
5 exp11d.1 . . . 4 (𝜑𝐴 ∈ ℝ+)
65adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+)
7 exp11d.2 . . . 4 (𝜑𝐵 ∈ ℝ+)
87adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+)
9 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
10 exp11d.5 . . . 4 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
1110adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐴𝑁) = (𝐵𝑁))
126, 8, 9, 11exp11nnd 14165 . 2 ((𝜑𝑁 ∈ ℕ) → 𝐴 = 𝐵)
135adantr 480 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+)
147adantr 480 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+)
15 simpr 484 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
1613rpcnd 12933 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
1715nnnn0d 12439 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0)
1816, 17expcld 14050 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ)
1914rpcnd 12933 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ)
2019, 17expcld 14050 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ)
2113rpne0d 12936 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0)
2215nnzd 12492 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
2316, 21, 22expne0d 14056 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0)
2414rpne0d 12936 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0)
2519, 24, 22expne0d 14056 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0)
2610adantr 480 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴𝑁) = (𝐵𝑁))
27 exp11d.3 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
2827zcnd 12575 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2928adantr 480 . . . . . 6 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
30 expneg2 13974 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
3116, 29, 17, 30syl3anc 1373 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
32 expneg2 13974 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
3319, 29, 17, 32syl3anc 1373 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
3426, 31, 333eqtr3d 2774 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁)))
3518, 20, 23, 25, 34rec11d 11915 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁))
3613, 14, 15, 35exp11nnd 14165 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵)
37 elz 12467 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
3827, 37sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
3938simprd 495 . 2 (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
404, 12, 36, 39mpjao3dan 1434 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004  -cneg 11342   / cdiv 11771  cn 12122  0cn0 12378  cz 12465  +crp 12887  cexp 13965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator