Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exp11d Structured version   Visualization version   GIF version

Theorem exp11d 41216
Description: exp11nnd 41215 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.)
Hypotheses
Ref Expression
exp11d.1 (𝜑𝐴 ∈ ℝ+)
exp11d.2 (𝜑𝐵 ∈ ℝ+)
exp11d.3 (𝜑𝑁 ∈ ℤ)
exp11d.4 (𝜑𝑁 ≠ 0)
exp11d.5 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
Assertion
Ref Expression
exp11d (𝜑𝐴 = 𝐵)

Proof of Theorem exp11d
StepHypRef Expression
1 simpr 486 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
2 exp11d.4 . . . 4 (𝜑𝑁 ≠ 0)
32adantr 482 . . 3 ((𝜑𝑁 = 0) → 𝑁 ≠ 0)
41, 3pm2.21ddne 3027 . 2 ((𝜑𝑁 = 0) → 𝐴 = 𝐵)
5 exp11d.1 . . . 4 (𝜑𝐴 ∈ ℝ+)
65adantr 482 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+)
7 exp11d.2 . . . 4 (𝜑𝐵 ∈ ℝ+)
87adantr 482 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+)
9 simpr 486 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
10 exp11d.5 . . . 4 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
1110adantr 482 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐴𝑁) = (𝐵𝑁))
126, 8, 9, 11exp11nnd 41215 . 2 ((𝜑𝑁 ∈ ℕ) → 𝐴 = 𝐵)
135adantr 482 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+)
147adantr 482 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+)
15 simpr 486 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
1613rpcnd 13018 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
1715nnnn0d 12532 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0)
1816, 17expcld 14111 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ)
1914rpcnd 13018 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ)
2019, 17expcld 14111 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ)
2113rpne0d 13021 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0)
2215nnzd 12585 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
2316, 21, 22expne0d 14117 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0)
2414rpne0d 13021 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0)
2519, 24, 22expne0d 14117 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0)
2610adantr 482 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴𝑁) = (𝐵𝑁))
27 exp11d.3 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
2827zcnd 12667 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2928adantr 482 . . . . . 6 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
30 expneg2 14036 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
3116, 29, 17, 30syl3anc 1372 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
32 expneg2 14036 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
3319, 29, 17, 32syl3anc 1372 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
3426, 31, 333eqtr3d 2781 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁)))
3518, 20, 23, 25, 34rec11d 12011 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁))
3613, 14, 15, 35exp11nnd 41215 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵)
37 elz 12560 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
3827, 37sylib 217 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
3938simprd 497 . 2 (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
404, 12, 36, 39mpjao3dan 1432 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2941  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  1c1 11111  -cneg 11445   / cdiv 11871  cn 12212  0cn0 12472  cz 12558  +crp 12974  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator