![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exp11d | Structured version Visualization version GIF version |
Description: exp11nnd 14297 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
Ref | Expression |
---|---|
exp11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
exp11d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
exp11d.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
exp11d.4 | ⊢ (𝜑 → 𝑁 ≠ 0) |
exp11d.5 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
Ref | Expression |
---|---|
exp11d | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
2 | exp11d.4 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 0) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 0) |
4 | 1, 3 | pm2.21ddne 3024 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = 𝐵) |
5 | exp11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
7 | exp11d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
10 | exp11d.5 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
12 | 6, 8, 9, 11 | exp11nnd 14297 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ) | |
16 | 13 | rpcnd 13077 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
17 | 15 | nnnn0d 12585 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0) |
18 | 16, 17 | expcld 14183 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ) |
19 | 14 | rpcnd 13077 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ) |
20 | 19, 17 | expcld 14183 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ) |
21 | 13 | rpne0d 13080 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0) |
22 | 15 | nnzd 12638 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
23 | 16, 21, 22 | expne0d 14189 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0) |
24 | 14 | rpne0d 13080 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0) |
25 | 19, 24, 22 | expne0d 14189 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0) |
26 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
27 | exp11d.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
28 | 27 | zcnd 12721 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
30 | expneg2 14108 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
31 | 16, 29, 17, 30 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
32 | expneg2 14108 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) | |
33 | 19, 29, 17, 32 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
34 | 26, 31, 33 | 3eqtr3d 2783 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁))) |
35 | 18, 20, 23, 25, 34 | rec11d 12062 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁)) |
36 | 13, 14, 15, 35 | exp11nnd 14297 | . 2 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
37 | elz 12613 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
38 | 27, 37 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
39 | 38 | simprd 495 | . 2 ⊢ (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
40 | 4, 12, 36, 39 | mpjao3dan 1431 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 -cneg 11491 / cdiv 11918 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ℝ+crp 13032 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |