| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exp11d | Structured version Visualization version GIF version | ||
| Description: exp11nnd 14284 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| exp11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| exp11d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| exp11d.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| exp11d.4 | ⊢ (𝜑 → 𝑁 ≠ 0) |
| exp11d.5 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| Ref | Expression |
|---|---|
| exp11d | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 2 | exp11d.4 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 0) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 0) |
| 4 | 1, 3 | pm2.21ddne 3017 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = 𝐵) |
| 5 | exp11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
| 7 | exp11d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 10 | exp11d.5 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| 12 | 6, 8, 9, 11 | exp11nnd 14284 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ) | |
| 16 | 13 | rpcnd 13058 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 17 | 15 | nnnn0d 12567 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0) |
| 18 | 16, 17 | expcld 14169 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ) |
| 19 | 14 | rpcnd 13058 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ) |
| 20 | 19, 17 | expcld 14169 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ) |
| 21 | 13 | rpne0d 13061 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0) |
| 22 | 15 | nnzd 12620 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 23 | 16, 21, 22 | expne0d 14175 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0) |
| 24 | 14 | rpne0d 13061 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0) |
| 25 | 19, 24, 22 | expne0d 14175 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0) |
| 26 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| 27 | exp11d.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 28 | 27 | zcnd 12703 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 30 | expneg2 14093 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
| 31 | 16, 29, 17, 30 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
| 32 | expneg2 14093 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) | |
| 33 | 19, 29, 17, 32 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
| 34 | 26, 31, 33 | 3eqtr3d 2779 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁))) |
| 35 | 18, 20, 23, 25, 34 | rec11d 12043 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁)) |
| 36 | 13, 14, 15, 35 | exp11nnd 14284 | . 2 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
| 37 | elz 12595 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 38 | 27, 37 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 39 | 38 | simprd 495 | . 2 ⊢ (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 40 | 4, 12, 36, 39 | mpjao3dan 1434 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 -cneg 11472 / cdiv 11899 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 ℝ+crp 13013 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |