| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exp11d | Structured version Visualization version GIF version | ||
| Description: exp11nnd 14170 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.) |
| Ref | Expression |
|---|---|
| exp11d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| exp11d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| exp11d.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| exp11d.4 | ⊢ (𝜑 → 𝑁 ≠ 0) |
| exp11d.5 | ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| Ref | Expression |
|---|---|
| exp11d | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 2 | exp11d.4 | . . . 4 ⊢ (𝜑 → 𝑁 ≠ 0) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ≠ 0) |
| 4 | 1, 3 | pm2.21ddne 3013 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 = 𝐵) |
| 5 | exp11d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
| 7 | exp11d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 10 | exp11d.5 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) = (𝐵↑𝑁)) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| 12 | 6, 8, 9, 11 | exp11nnd 14170 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+) |
| 14 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+) |
| 15 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ) | |
| 16 | 13 | rpcnd 12938 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 17 | 15 | nnnn0d 12449 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0) |
| 18 | 16, 17 | expcld 14055 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ) |
| 19 | 14 | rpcnd 12938 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ) |
| 20 | 19, 17 | expcld 14055 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ) |
| 21 | 13 | rpne0d 12941 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0) |
| 22 | 15 | nnzd 12501 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ) |
| 23 | 16, 21, 22 | expne0d 14061 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0) |
| 24 | 14 | rpne0d 12941 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0) |
| 25 | 19, 24, 22 | expne0d 14061 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0) |
| 26 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
| 27 | exp11d.3 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 28 | 27 | zcnd 12584 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 30 | expneg2 13979 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
| 31 | 16, 29, 17, 30 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
| 32 | expneg2 13979 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) | |
| 33 | 19, 29, 17, 32 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑𝑁) = (1 / (𝐵↑-𝑁))) |
| 34 | 26, 31, 33 | 3eqtr3d 2776 | . . . 4 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁))) |
| 35 | 18, 20, 23, 25, 34 | rec11d 11925 | . . 3 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁)) |
| 36 | 13, 14, 15, 35 | exp11nnd 14170 | . 2 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵) |
| 37 | elz 12477 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | |
| 38 | 27, 37 | sylib 218 | . . 3 ⊢ (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 39 | 38 | simprd 495 | . 2 ⊢ (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) |
| 40 | 4, 12, 36, 39 | mpjao3dan 1434 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 -cneg 11352 / cdiv 11781 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 ℝ+crp 12892 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |