Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exp11d Structured version   Visualization version   GIF version

Theorem exp11d 42321
Description: exp11nnd 14233 for nonzero integer exponents. (Contributed by SN, 14-Sep-2023.)
Hypotheses
Ref Expression
exp11d.1 (𝜑𝐴 ∈ ℝ+)
exp11d.2 (𝜑𝐵 ∈ ℝ+)
exp11d.3 (𝜑𝑁 ∈ ℤ)
exp11d.4 (𝜑𝑁 ≠ 0)
exp11d.5 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
Assertion
Ref Expression
exp11d (𝜑𝐴 = 𝐵)

Proof of Theorem exp11d
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
2 exp11d.4 . . . 4 (𝜑𝑁 ≠ 0)
32adantr 480 . . 3 ((𝜑𝑁 = 0) → 𝑁 ≠ 0)
41, 3pm2.21ddne 3010 . 2 ((𝜑𝑁 = 0) → 𝐴 = 𝐵)
5 exp11d.1 . . . 4 (𝜑𝐴 ∈ ℝ+)
65adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+)
7 exp11d.2 . . . 4 (𝜑𝐵 ∈ ℝ+)
87adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+)
9 simpr 484 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
10 exp11d.5 . . . 4 (𝜑 → (𝐴𝑁) = (𝐵𝑁))
1110adantr 480 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝐴𝑁) = (𝐵𝑁))
126, 8, 9, 11exp11nnd 14233 . 2 ((𝜑𝑁 ∈ ℕ) → 𝐴 = 𝐵)
135adantr 480 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℝ+)
147adantr 480 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℝ+)
15 simpr 484 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ)
1613rpcnd 13004 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
1715nnnn0d 12510 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℕ0)
1816, 17expcld 14118 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ∈ ℂ)
1914rpcnd 13004 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ∈ ℂ)
2019, 17expcld 14118 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ∈ ℂ)
2113rpne0d 13007 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 ≠ 0)
2215nnzd 12563 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → -𝑁 ∈ ℤ)
2316, 21, 22expne0d 14124 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) ≠ 0)
2414rpne0d 13007 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐵 ≠ 0)
2519, 24, 22expne0d 14124 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵↑-𝑁) ≠ 0)
2610adantr 480 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴𝑁) = (𝐵𝑁))
27 exp11d.3 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
2827zcnd 12646 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
2928adantr 480 . . . . . 6 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
30 expneg2 14042 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
3116, 29, 17, 30syl3anc 1373 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
32 expneg2 14042 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
3319, 29, 17, 32syl3anc 1373 . . . . 5 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐵𝑁) = (1 / (𝐵↑-𝑁)))
3426, 31, 333eqtr3d 2773 . . . 4 ((𝜑 ∧ -𝑁 ∈ ℕ) → (1 / (𝐴↑-𝑁)) = (1 / (𝐵↑-𝑁)))
3518, 20, 23, 25, 34rec11d 11986 . . 3 ((𝜑 ∧ -𝑁 ∈ ℕ) → (𝐴↑-𝑁) = (𝐵↑-𝑁))
3613, 14, 15, 35exp11nnd 14233 . 2 ((𝜑 ∧ -𝑁 ∈ ℕ) → 𝐴 = 𝐵)
37 elz 12538 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
3827, 37sylib 218 . . 3 (𝜑 → (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
3938simprd 495 . 2 (𝜑 → (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))
404, 12, 36, 39mpjao3dan 1434 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  +crp 12958  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator