MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolncol Structured version   Visualization version   GIF version

Theorem ncolncol 26446
Description: Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
ncolncol.1 (𝜑𝐷 ∈ (𝐴𝐿𝐵))
ncolncol.2 (𝜑𝐷𝐵)
Assertion
Ref Expression
ncolncol (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))

Proof of Theorem ncolncol
StepHypRef Expression
1 tglineinteq.e . 2 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2 tglineintmo.p . . 3 𝑃 = (Base‘𝐺)
3 tglineintmo.l . . 3 𝐿 = (LineG‘𝐺)
4 tglineintmo.i . . 3 𝐼 = (Itv‘𝐺)
5 tglineintmo.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 484 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐺 ∈ TarskiG)
7 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
87adantr 484 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐴𝑃)
9 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
109adantr 484 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐵𝑃)
11 tglineinteq.c . . . 4 (𝜑𝐶𝑃)
1211adantr 484 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐶𝑃)
135ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐺 ∈ TarskiG)
147ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐴𝑃)
159ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐵𝑃)
1611ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶𝑃)
17 ncolncol.1 . . . . . . . 8 (𝜑𝐷 ∈ (𝐴𝐿𝐵))
182, 3, 4, 5, 7, 9, 17tglngne 26350 . . . . . . 7 (𝜑𝐴𝐵)
1918ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐴𝐵)
20 tglineinteq.d . . . . . . . . 9 (𝜑𝐷𝑃)
2120ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐷𝑃)
22 ncolncol.2 . . . . . . . . . 10 (𝜑𝐷𝐵)
2322necomd 3069 . . . . . . . . 9 (𝜑𝐵𝐷)
2423ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐵𝐷)
25 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐷𝐿𝐵))
262, 4, 3, 13, 15, 21, 16, 24, 25lncom 26422 . . . . . . 7 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐵𝐿𝐷))
2718necomd 3069 . . . . . . . . 9 (𝜑𝐵𝐴)
282, 4, 3, 5, 9, 7, 20, 27, 17lncom 26422 . . . . . . . . 9 (𝜑𝐷 ∈ (𝐵𝐿𝐴))
292, 4, 3, 5, 9, 7, 27, 20, 22, 28tglineelsb2 26432 . . . . . . . 8 (𝜑 → (𝐵𝐿𝐴) = (𝐵𝐿𝐷))
3029ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → (𝐵𝐿𝐴) = (𝐵𝐿𝐷))
3126, 30eleqtrrd 2919 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐵𝐿𝐴))
322, 4, 3, 13, 14, 15, 16, 19, 31lncom 26422 . . . . 5 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
3332orcd 870 . . . 4 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
34 simpr 488 . . . . 5 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
3522ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → 𝐷𝐵)
3634, 35pm2.21ddne 3098 . . . 4 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3720adantr 484 . . . . 5 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐷𝑃)
38 simpr 488 . . . . 5 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
392, 3, 4, 6, 10, 12, 37, 38colrot2 26360 . . . 4 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐶 ∈ (𝐷𝐿𝐵) ∨ 𝐷 = 𝐵))
4033, 36, 39mpjaodan 956 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
412, 3, 4, 6, 8, 10, 12, 40colrot1 26359 . 2 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
421, 41mtand 815 1 (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  wne 3014  cfv 6343  (class class class)co 7149  Basecbs 16483  TarskiGcstrkg 26230  Itvcitv 26236  LineGclng 26237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26248  df-trkgb 26249  df-trkgcb 26250  df-trkg 26253  df-cgrg 26311
This theorem is referenced by:  coltr  26447  midexlem  26492  acopy  26633  acopyeu  26634
  Copyright terms: Public domain W3C validator