MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolncol Structured version   Visualization version   GIF version

Theorem ncolncol 28668
Description: Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
ncolncol.1 (𝜑𝐷 ∈ (𝐴𝐿𝐵))
ncolncol.2 (𝜑𝐷𝐵)
Assertion
Ref Expression
ncolncol (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))

Proof of Theorem ncolncol
StepHypRef Expression
1 tglineinteq.e . 2 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
2 tglineintmo.p . . 3 𝑃 = (Base‘𝐺)
3 tglineintmo.l . . 3 𝐿 = (LineG‘𝐺)
4 tglineintmo.i . . 3 𝐼 = (Itv‘𝐺)
5 tglineintmo.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐺 ∈ TarskiG)
7 tglineinteq.a . . . 4 (𝜑𝐴𝑃)
87adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐴𝑃)
9 tglineinteq.b . . . 4 (𝜑𝐵𝑃)
109adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐵𝑃)
11 tglineinteq.c . . . 4 (𝜑𝐶𝑃)
1211adantr 480 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐶𝑃)
135ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐺 ∈ TarskiG)
147ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐴𝑃)
159ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐵𝑃)
1611ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶𝑃)
17 ncolncol.1 . . . . . . . 8 (𝜑𝐷 ∈ (𝐴𝐿𝐵))
182, 3, 4, 5, 7, 9, 17tglngne 28572 . . . . . . 7 (𝜑𝐴𝐵)
1918ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐴𝐵)
20 tglineinteq.d . . . . . . . . 9 (𝜑𝐷𝑃)
2120ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐷𝑃)
22 ncolncol.2 . . . . . . . . . 10 (𝜑𝐷𝐵)
2322necomd 2993 . . . . . . . . 9 (𝜑𝐵𝐷)
2423ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐵𝐷)
25 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐷𝐿𝐵))
262, 4, 3, 13, 15, 21, 16, 24, 25lncom 28644 . . . . . . 7 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐵𝐿𝐷))
2718necomd 2993 . . . . . . . . 9 (𝜑𝐵𝐴)
282, 4, 3, 5, 9, 7, 20, 27, 17lncom 28644 . . . . . . . . 9 (𝜑𝐷 ∈ (𝐵𝐿𝐴))
292, 4, 3, 5, 9, 7, 27, 20, 22, 28tglineelsb2 28654 . . . . . . . 8 (𝜑 → (𝐵𝐿𝐴) = (𝐵𝐿𝐷))
3029ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → (𝐵𝐿𝐴) = (𝐵𝐿𝐷))
3126, 30eleqtrrd 2841 . . . . . 6 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐵𝐿𝐴))
322, 4, 3, 13, 14, 15, 16, 19, 31lncom 28644 . . . . 5 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵))
3332orcd 873 . . . 4 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
34 simpr 484 . . . . 5 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
3522ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → 𝐷𝐵)
3634, 35pm2.21ddne 3023 . . . 4 (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
3720adantr 480 . . . . 5 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐷𝑃)
38 simpr 484 . . . . 5 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
392, 3, 4, 6, 10, 12, 37, 38colrot2 28582 . . . 4 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐶 ∈ (𝐷𝐿𝐵) ∨ 𝐷 = 𝐵))
4033, 36, 39mpjaodan 960 . . 3 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
412, 3, 4, 6, 8, 10, 12, 40colrot1 28581 . 2 ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
421, 41mtand 816 1 (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  Basecbs 17244  TarskiGcstrkg 28449  Itvcitv 28455  LineGclng 28456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-s2 14883  df-s3 14884  df-trkgc 28470  df-trkgb 28471  df-trkgcb 28472  df-trkg 28475  df-cgrg 28533
This theorem is referenced by:  coltr  28669  midexlem  28714  acopy  28855  acopyeu  28856
  Copyright terms: Public domain W3C validator