![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncolncol | Structured version Visualization version GIF version |
Description: Deduce non-colinearity from non-colinearity and colinearity. (Contributed by Thierry Arnoux, 27-Aug-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineinteq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tglineinteq.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tglineinteq.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tglineinteq.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tglineinteq.e | ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
ncolncol.1 | ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐿𝐵)) |
ncolncol.2 | ⊢ (𝜑 → 𝐷 ≠ 𝐵) |
Ref | Expression |
---|---|
ncolncol | ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineinteq.e | . 2 ⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | |
2 | tglineintmo.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglineintmo.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineintmo.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglineintmo.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐺 ∈ TarskiG) |
7 | tglineinteq.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | 7 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐴 ∈ 𝑃) |
9 | tglineinteq.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 9 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐵 ∈ 𝑃) |
11 | tglineinteq.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
12 | 11 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐶 ∈ 𝑃) |
13 | 5 | ad2antrr 719 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐺 ∈ TarskiG) |
14 | 7 | ad2antrr 719 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐴 ∈ 𝑃) |
15 | 9 | ad2antrr 719 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐵 ∈ 𝑃) |
16 | 11 | ad2antrr 719 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ 𝑃) |
17 | ncolncol.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ (𝐴𝐿𝐵)) | |
18 | 2, 3, 4, 5, 7, 9, 17 | tglngne 25862 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
19 | 18 | ad2antrr 719 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐴 ≠ 𝐵) |
20 | tglineinteq.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
21 | 20 | ad2antrr 719 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐷 ∈ 𝑃) |
22 | ncolncol.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐷 ≠ 𝐵) | |
23 | 22 | necomd 3054 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ≠ 𝐷) |
24 | 23 | ad2antrr 719 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐵 ≠ 𝐷) |
25 | simpr 479 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐷𝐿𝐵)) | |
26 | 2, 4, 3, 13, 15, 21, 16, 24, 25 | lncom 25934 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐵𝐿𝐷)) |
27 | 18 | necomd 3054 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
28 | 2, 4, 3, 5, 9, 7, 20, 27, 17 | lncom 25934 | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ (𝐵𝐿𝐴)) |
29 | 2, 4, 3, 5, 9, 7, 27, 20, 22, 28 | tglineelsb2 25944 | . . . . . . . 8 ⊢ (𝜑 → (𝐵𝐿𝐴) = (𝐵𝐿𝐷)) |
30 | 29 | ad2antrr 719 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → (𝐵𝐿𝐴) = (𝐵𝐿𝐷)) |
31 | 26, 30 | eleqtrrd 2909 | . . . . . 6 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐵𝐿𝐴)) |
32 | 2, 4, 3, 13, 14, 15, 16, 19, 31 | lncom 25934 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → 𝐶 ∈ (𝐴𝐿𝐵)) |
33 | 32 | orcd 906 | . . . 4 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐶 ∈ (𝐷𝐿𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
34 | simpr 479 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵) | |
35 | 22 | ad2antrr 719 | . . . . 5 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → 𝐷 ≠ 𝐵) |
36 | 34, 35 | pm2.21ddne 3083 | . . . 4 ⊢ (((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) ∧ 𝐷 = 𝐵) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
37 | 20 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → 𝐷 ∈ 𝑃) |
38 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) | |
39 | 2, 3, 4, 6, 10, 12, 37, 38 | colrot2 25872 | . . . 4 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐶 ∈ (𝐷𝐿𝐵) ∨ 𝐷 = 𝐵)) |
40 | 33, 36, 39 | mpjaodan 988 | . . 3 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
41 | 2, 3, 4, 6, 8, 10, 12, 40 | colrot1 25871 | . 2 ⊢ ((𝜑 ∧ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
42 | 1, 41 | mtand 852 | 1 ⊢ (𝜑 → ¬ (𝐷 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 880 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 TarskiGcstrkg 25742 Itvcitv 25748 LineGclng 25749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-pm 8125 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-hash 13411 df-word 13575 df-concat 13631 df-s1 13656 df-s2 13969 df-s3 13970 df-trkgc 25760 df-trkgb 25761 df-trkgcb 25762 df-trkg 25765 df-cgrg 25823 |
This theorem is referenced by: coltr 25959 midexlem 26004 acopy 26142 acopyeu 26143 |
Copyright terms: Public domain | W3C validator |