Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq00topi Structured version   Visualization version   GIF version

Theorem coseq00topi 25105
 Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq00topi
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) = 0)
2 simpl 486 . . . . . . . . . . . 12 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ (0[,]π))
3 0re 10635 . . . . . . . . . . . . 13 0 ∈ ℝ
4 pire 25061 . . . . . . . . . . . . 13 π ∈ ℝ
53, 4elicc2i 12794 . . . . . . . . . . . 12 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
62, 5sylib 221 . . . . . . . . . . 11 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
76simp1d 1139 . . . . . . . . . 10 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
87ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 simpr 488 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 0 < 𝐴)
10 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 < (π / 2))
113rexri 10691 . . . . . . . . . 10 0 ∈ ℝ*
12 halfpire 25067 . . . . . . . . . . 11 (π / 2) ∈ ℝ
1312rexri 10691 . . . . . . . . . 10 (π / 2) ∈ ℝ*
14 elioo2 12770 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
1511, 13, 14mp2an 691 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
168, 9, 10, 15syl3anbrc 1340 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(π / 2)))
17 sincosq1sgn 25101 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
1816, 17syl 17 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
1918simprd 499 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 0 < (cos‘𝐴))
2019gt0ne0d 11196 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → (cos‘𝐴) ≠ 0)
21 cos0 15498 . . . . . . 7 (cos‘0) = 1
22 simpr 488 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → 0 = 𝐴)
2322fveq2d 6650 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘0) = (cos‘𝐴))
2421, 23syl5reqr 2848 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘𝐴) = 1)
25 ax-1ne0 10598 . . . . . . 7 1 ≠ 0
2625a1i 11 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → 1 ≠ 0)
2724, 26eqnetrd 3054 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘𝐴) ≠ 0)
286simp2d 1140 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 0 ≤ 𝐴)
29 0red 10636 . . . . . . . 8 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 0 ∈ ℝ)
3029, 7leloed 10775 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
3128, 30mpbid 235 . . . . . 6 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (0 < 𝐴 ∨ 0 = 𝐴))
3231adantr 484 . . . . 5 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (0 < 𝐴 ∨ 0 = 𝐴))
3320, 27, 32mpjaodan 956 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) ≠ 0)
341, 33pm2.21ddne 3071 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 𝐴 = (π / 2))
35 simpr 488 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 = (π / 2)) → 𝐴 = (π / 2))
36 simplr 768 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) = 0)
377ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 ∈ ℝ)
38 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (π / 2) < 𝐴)
39 simpr 488 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 < π)
404rexri 10691 . . . . . . . . . 10 π ∈ ℝ*
41 elioo2 12770 . . . . . . . . . 10 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
4213, 40, 41mp2an 691 . . . . . . . . 9 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
4337, 38, 39, 42syl3anbrc 1340 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 ∈ ((π / 2)(,)π))
44 sincosq2sgn 25102 . . . . . . . 8 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
4543, 44syl 17 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
4645simprd 499 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (cos‘𝐴) < 0)
4746lt0ne0d 11197 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (cos‘𝐴) ≠ 0)
48 simpr 488 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → 𝐴 = π)
4948fveq2d 6650 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) = (cos‘π))
50 cospi 25075 . . . . . . 7 (cos‘π) = -1
5149, 50eqtrdi 2849 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) = -1)
52 neg1ne0 11744 . . . . . . 7 -1 ≠ 0
5352a1i 11 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → -1 ≠ 0)
5451, 53eqnetrd 3054 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) ≠ 0)
556simp3d 1141 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ≤ π)
564a1i 11 . . . . . . . 8 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
577, 56leloed 10775 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
5855, 57mpbid 235 . . . . . 6 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 < π ∨ 𝐴 = π))
5958adantr 484 . . . . 5 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (𝐴 < π ∨ 𝐴 = π))
6047, 54, 59mpjaodan 956 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) ≠ 0)
6136, 60pm2.21ddne 3071 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → 𝐴 = (π / 2))
6256rehalfcld 11875 . . . 4 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (π / 2) ∈ ℝ)
637, 62lttri4d 10773 . . 3 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 < (π / 2) ∨ 𝐴 = (π / 2) ∨ (π / 2) < 𝐴))
6434, 35, 61, 63mpjao3dan 1428 . 2 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 = (π / 2))
65 fveq2 6646 . . . 4 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
66 coshalfpi 25072 . . . 4 (cos‘(π / 2)) = 0
6765, 66eqtrdi 2849 . . 3 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
6867adantl 485 . 2 ((𝐴 ∈ (0[,]π) ∧ 𝐴 = (π / 2)) → (cos‘𝐴) = 0)
6964, 68impbida 800 1 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136  ℝcr 10528  0cc0 10529  1c1 10530  ℝ*cxr 10666   < clt 10667   ≤ cle 10668  -cneg 10863   / cdiv 11289  2c2 11683  (,)cioo 12729  [,]cicc 12732  sincsin 15412  cosccos 15413  πcpi 15415 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-lp 21751  df-perf 21752  df-cn 21842  df-cnp 21843  df-haus 21930  df-tx 22177  df-hmeo 22370  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-xms 22937  df-ms 22938  df-tms 22939  df-cncf 23493  df-limc 24479  df-dv 24480 This theorem is referenced by:  coseq0negpitopi  25106
 Copyright terms: Public domain W3C validator