MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq00topi Structured version   Visualization version   GIF version

Theorem coseq00topi 26562
Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq00topi
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) = 0)
2 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ (0[,]π))
3 0re 11292 . . . . . . . . . . . . 13 0 ∈ ℝ
4 pire 26518 . . . . . . . . . . . . 13 π ∈ ℝ
53, 4elicc2i 13473 . . . . . . . . . . . 12 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
62, 5sylib 218 . . . . . . . . . . 11 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
76simp1d 1142 . . . . . . . . . 10 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
87ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 0 < 𝐴)
10 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 < (π / 2))
113rexri 11348 . . . . . . . . . 10 0 ∈ ℝ*
12 halfpire 26524 . . . . . . . . . . 11 (π / 2) ∈ ℝ
1312rexri 11348 . . . . . . . . . 10 (π / 2) ∈ ℝ*
14 elioo2 13448 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
1511, 13, 14mp2an 691 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
168, 9, 10, 15syl3anbrc 1343 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(π / 2)))
17 sincosq1sgn 26558 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
1816, 17syl 17 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
1918simprd 495 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 0 < (cos‘𝐴))
2019gt0ne0d 11854 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → (cos‘𝐴) ≠ 0)
21 simpr 484 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → 0 = 𝐴)
2221fveq2d 6924 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘0) = (cos‘𝐴))
23 cos0 16198 . . . . . . 7 (cos‘0) = 1
2422, 23eqtr3di 2795 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘𝐴) = 1)
25 ax-1ne0 11253 . . . . . . 7 1 ≠ 0
2625a1i 11 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → 1 ≠ 0)
2724, 26eqnetrd 3014 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘𝐴) ≠ 0)
286simp2d 1143 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 0 ≤ 𝐴)
29 0red 11293 . . . . . . . 8 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 0 ∈ ℝ)
3029, 7leloed 11433 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
3128, 30mpbid 232 . . . . . 6 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (0 < 𝐴 ∨ 0 = 𝐴))
3231adantr 480 . . . . 5 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (0 < 𝐴 ∨ 0 = 𝐴))
3320, 27, 32mpjaodan 959 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) ≠ 0)
341, 33pm2.21ddne 3032 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 𝐴 = (π / 2))
35 simpr 484 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 = (π / 2)) → 𝐴 = (π / 2))
36 simplr 768 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) = 0)
377ad2antrr 725 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 ∈ ℝ)
38 simplr 768 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (π / 2) < 𝐴)
39 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 < π)
404rexri 11348 . . . . . . . . . 10 π ∈ ℝ*
41 elioo2 13448 . . . . . . . . . 10 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
4213, 40, 41mp2an 691 . . . . . . . . 9 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
4337, 38, 39, 42syl3anbrc 1343 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 ∈ ((π / 2)(,)π))
44 sincosq2sgn 26559 . . . . . . . 8 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
4543, 44syl 17 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
4645simprd 495 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (cos‘𝐴) < 0)
4746lt0ne0d 11855 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (cos‘𝐴) ≠ 0)
48 simpr 484 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → 𝐴 = π)
4948fveq2d 6924 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) = (cos‘π))
50 cospi 26532 . . . . . . 7 (cos‘π) = -1
5149, 50eqtrdi 2796 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) = -1)
52 neg1ne0 12409 . . . . . . 7 -1 ≠ 0
5352a1i 11 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → -1 ≠ 0)
5451, 53eqnetrd 3014 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) ≠ 0)
556simp3d 1144 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ≤ π)
564a1i 11 . . . . . . . 8 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
577, 56leloed 11433 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
5855, 57mpbid 232 . . . . . 6 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 < π ∨ 𝐴 = π))
5958adantr 480 . . . . 5 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (𝐴 < π ∨ 𝐴 = π))
6047, 54, 59mpjaodan 959 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) ≠ 0)
6136, 60pm2.21ddne 3032 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → 𝐴 = (π / 2))
6256rehalfcld 12540 . . . 4 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (π / 2) ∈ ℝ)
637, 62lttri4d 11431 . . 3 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 < (π / 2) ∨ 𝐴 = (π / 2) ∨ (π / 2) < 𝐴))
6434, 35, 61, 63mpjao3dan 1432 . 2 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 = (π / 2))
65 fveq2 6920 . . . 4 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
66 coshalfpi 26529 . . . 4 (cos‘(π / 2)) = 0
6765, 66eqtrdi 2796 . . 3 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
6867adantl 481 . 2 ((𝐴 ∈ (0[,]π) ∧ 𝐴 = (π / 2)) → (cos‘𝐴) = 0)
6964, 68impbida 800 1 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  2c2 12348  (,)cioo 13407  [,]cicc 13410  sincsin 16111  cosccos 16112  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  coseq0negpitopi  26563
  Copyright terms: Public domain W3C validator