MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq00topi Structured version   Visualization version   GIF version

Theorem coseq00topi 25765
Description: Location of the zeroes of cosine in (0[,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq00topi (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))

Proof of Theorem coseq00topi
StepHypRef Expression
1 simplr 767 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) = 0)
2 simpl 484 . . . . . . . . . . . 12 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ (0[,]π))
3 0re 11083 . . . . . . . . . . . . 13 0 ∈ ℝ
4 pire 25721 . . . . . . . . . . . . 13 π ∈ ℝ
53, 4elicc2i 13251 . . . . . . . . . . . 12 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
62, 5sylib 217 . . . . . . . . . . 11 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
76simp1d 1142 . . . . . . . . . 10 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
87ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 simpr 486 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 0 < 𝐴)
10 simplr 767 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 < (π / 2))
113rexri 11139 . . . . . . . . . 10 0 ∈ ℝ*
12 halfpire 25727 . . . . . . . . . . 11 (π / 2) ∈ ℝ
1312rexri 11139 . . . . . . . . . 10 (π / 2) ∈ ℝ*
14 elioo2 13226 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
1511, 13, 14mp2an 690 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
168, 9, 10, 15syl3anbrc 1343 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 𝐴 ∈ (0(,)(π / 2)))
17 sincosq1sgn 25761 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
1816, 17syl 17 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
1918simprd 497 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → 0 < (cos‘𝐴))
2019gt0ne0d 11645 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 < 𝐴) → (cos‘𝐴) ≠ 0)
21 simpr 486 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → 0 = 𝐴)
2221fveq2d 6834 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘0) = (cos‘𝐴))
23 cos0 15959 . . . . . . 7 (cos‘0) = 1
2422, 23eqtr3di 2792 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘𝐴) = 1)
25 ax-1ne0 11046 . . . . . . 7 1 ≠ 0
2625a1i 11 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → 1 ≠ 0)
2724, 26eqnetrd 3009 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) ∧ 0 = 𝐴) → (cos‘𝐴) ≠ 0)
286simp2d 1143 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 0 ≤ 𝐴)
29 0red 11084 . . . . . . . 8 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 0 ∈ ℝ)
3029, 7leloed 11224 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
3128, 30mpbid 231 . . . . . 6 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (0 < 𝐴 ∨ 0 = 𝐴))
3231adantr 482 . . . . 5 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (0 < 𝐴 ∨ 0 = 𝐴))
3320, 27, 32mpjaodan 957 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → (cos‘𝐴) ≠ 0)
341, 33pm2.21ddne 3027 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 < (π / 2)) → 𝐴 = (π / 2))
35 simpr 486 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 = (π / 2)) → 𝐴 = (π / 2))
36 simplr 767 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) = 0)
377ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 ∈ ℝ)
38 simplr 767 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (π / 2) < 𝐴)
39 simpr 486 . . . . . . . . 9 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 < π)
404rexri 11139 . . . . . . . . . 10 π ∈ ℝ*
41 elioo2 13226 . . . . . . . . . 10 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π)))
4213, 40, 41mp2an 690 . . . . . . . . 9 (𝐴 ∈ ((π / 2)(,)π) ↔ (𝐴 ∈ ℝ ∧ (π / 2) < 𝐴𝐴 < π))
4337, 38, 39, 42syl3anbrc 1343 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → 𝐴 ∈ ((π / 2)(,)π))
44 sincosq2sgn 25762 . . . . . . . 8 (𝐴 ∈ ((π / 2)(,)π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
4543, 44syl 17 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (0 < (sin‘𝐴) ∧ (cos‘𝐴) < 0))
4645simprd 497 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (cos‘𝐴) < 0)
4746lt0ne0d 11646 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 < π) → (cos‘𝐴) ≠ 0)
48 simpr 486 . . . . . . . 8 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → 𝐴 = π)
4948fveq2d 6834 . . . . . . 7 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) = (cos‘π))
50 cospi 25735 . . . . . . 7 (cos‘π) = -1
5149, 50eqtrdi 2793 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) = -1)
52 neg1ne0 12195 . . . . . . 7 -1 ≠ 0
5352a1i 11 . . . . . 6 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → -1 ≠ 0)
5451, 53eqnetrd 3009 . . . . 5 ((((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) ∧ 𝐴 = π) → (cos‘𝐴) ≠ 0)
556simp3d 1144 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ≤ π)
564a1i 11 . . . . . . . 8 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
577, 56leloed 11224 . . . . . . 7 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ≤ π ↔ (𝐴 < π ∨ 𝐴 = π)))
5855, 57mpbid 231 . . . . . 6 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 < π ∨ 𝐴 = π))
5958adantr 482 . . . . 5 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (𝐴 < π ∨ 𝐴 = π))
6047, 54, 59mpjaodan 957 . . . 4 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → (cos‘𝐴) ≠ 0)
6136, 60pm2.21ddne 3027 . . 3 (((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) ∧ (π / 2) < 𝐴) → 𝐴 = (π / 2))
6256rehalfcld 12326 . . . 4 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (π / 2) ∈ ℝ)
637, 62lttri4d 11222 . . 3 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → (𝐴 < (π / 2) ∨ 𝐴 = (π / 2) ∨ (π / 2) < 𝐴))
6434, 35, 61, 63mpjao3dan 1431 . 2 ((𝐴 ∈ (0[,]π) ∧ (cos‘𝐴) = 0) → 𝐴 = (π / 2))
65 fveq2 6830 . . . 4 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
66 coshalfpi 25732 . . . 4 (cos‘(π / 2)) = 0
6765, 66eqtrdi 2793 . . 3 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
6867adantl 483 . 2 ((𝐴 ∈ (0[,]π) ∧ 𝐴 = (π / 2)) → (cos‘𝐴) = 0)
6964, 68impbida 799 1 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941   class class class wbr 5097  cfv 6484  (class class class)co 7342  cr 10976  0cc0 10977  1c1 10978  *cxr 11114   < clt 11115  cle 11116  -cneg 11312   / cdiv 11738  2c2 12134  (,)cioo 13185  [,]cicc 13188  sincsin 15873  cosccos 15874  πcpi 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055  ax-addf 11056  ax-mulf 11057
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ioo 13189  df-ioc 13190  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-fl 13618  df-seq 13828  df-exp 13889  df-fac 14094  df-bc 14123  df-hash 14151  df-shft 14878  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-limsup 15280  df-clim 15297  df-rlim 15298  df-sum 15498  df-ef 15877  df-sin 15879  df-cos 15880  df-pi 15882  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-starv 17075  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-unif 17083  df-hom 17084  df-cco 17085  df-rest 17231  df-topn 17232  df-0g 17250  df-gsum 17251  df-topgen 17252  df-pt 17253  df-prds 17256  df-xrs 17311  df-qtop 17316  df-imas 17317  df-xps 17319  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-mulg 18798  df-cntz 19020  df-cmn 19484  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137
This theorem is referenced by:  coseq0negpitopi  25766
  Copyright terms: Public domain W3C validator