Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s3f1 Structured version   Visualization version   GIF version

Theorem s3f1 30623
Description: Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s3f1.i (𝜑𝐼𝐷)
s3f1.j (𝜑𝐽𝐷)
s3f1.k (𝜑𝐾𝐷)
s3f1.1 (𝜑𝐼𝐽)
s3f1.2 (𝜑𝐽𝐾)
s3f1.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
s3f1 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)

Proof of Theorem s3f1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 s3f1.i . . . . 5 (𝜑𝐼𝐷)
2 s3f1.j . . . . 5 (𝜑𝐽𝐷)
3 s3f1.k . . . . 5 (𝜑𝐾𝐷)
41, 2, 3s3cld 14234 . . . 4 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
5 wrdf 13867 . . . 4 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽𝐾”⟩:(0..^(♯‘⟨“𝐼𝐽𝐾”⟩))⟶𝐷)
64, 5syl 17 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:(0..^(♯‘⟨“𝐼𝐽𝐾”⟩))⟶𝐷)
76ffdmd 6537 . 2 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩⟶𝐷)
8 simplr 767 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑖 = 0)
9 simpr 487 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑗 = 0)
108, 9eqtr4d 2859 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑖 = 𝑗)
11 simpllr 774 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
12 simpr 487 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → 𝑖 = 0)
1312fveq2d 6674 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘0))
14 s3fv0 14253 . . . . . . . . . . . . 13 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
151, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
1615ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
1713, 16eqtrd 2856 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐼)
1817adantr 483 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐼)
19 simpr 487 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → 𝑗 = 1)
2019fveq2d 6674 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = (⟨“𝐼𝐽𝐾”⟩‘1))
21 s3fv1 14254 . . . . . . . . . . . . 13 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
2322ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
2420, 23eqtrd 2856 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐽)
2524adantlr 713 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐽)
2611, 18, 253eqtr3d 2864 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝐼 = 𝐽)
27 s3f1.1 . . . . . . . . 9 (𝜑𝐼𝐽)
2827ad5antr 732 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝐼𝐽)
2926, 28pm2.21ddne 3101 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝑖 = 𝑗)
30 simpllr 774 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
3117adantr 483 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐼)
32 simpr 487 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → 𝑗 = 2)
3332fveq2d 6674 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = (⟨“𝐼𝐽𝐾”⟩‘2))
34 s3fv2 14255 . . . . . . . . . . . . 13 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
353, 34syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3635ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3733, 36eqtrd 2856 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐾)
3837adantlr 713 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐾)
3930, 31, 383eqtr3rd 2865 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝐾 = 𝐼)
40 s3f1.3 . . . . . . . . 9 (𝜑𝐾𝐼)
4140ad5antr 732 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝐾𝐼)
4239, 41pm2.21ddne 3101 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝑖 = 𝑗)
43 wrddm 13869 . . . . . . . . . . . . . 14 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → dom ⟨“𝐼𝐽𝐾”⟩ = (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
444, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
45 s3len 14256 . . . . . . . . . . . . . . 15 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
4645oveq2i 7167 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = (0..^3)
47 fzo0to3tp 13124 . . . . . . . . . . . . . 14 (0..^3) = {0, 1, 2}
4846, 47eqtri 2844 . . . . . . . . . . . . 13 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = {0, 1, 2}
4944, 48syl6eq 2872 . . . . . . . . . . . 12 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = {0, 1, 2})
5049eleq2d 2898 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩ ↔ 𝑗 ∈ {0, 1, 2}))
5150biimpa 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → 𝑗 ∈ {0, 1, 2})
52 vex 3497 . . . . . . . . . . 11 𝑗 ∈ V
5352eltp 4626 . . . . . . . . . 10 (𝑗 ∈ {0, 1, 2} ↔ (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5451, 53sylib 220 . . . . . . . . 9 ((𝜑𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5554adantlr 713 . . . . . . . 8 (((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5655ad2antrr 724 . . . . . . 7 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5710, 29, 42, 56mpjao3dan 1427 . . . . . 6 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → 𝑖 = 𝑗)
58 simpllr 774 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
59 simpr 487 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → 𝑖 = 1)
6059fveq2d 6674 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘1))
6122ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
6260, 61eqtrd 2856 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐽)
6362adantr 483 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐽)
64 simpr 487 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → 𝑗 = 0)
6564fveq2d 6674 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = (⟨“𝐼𝐽𝐾”⟩‘0))
6615ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
6765, 66eqtrd 2856 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐼)
6867adantlr 713 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐼)
6958, 63, 683eqtr3rd 2865 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝐼 = 𝐽)
7027ad5antr 732 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝐼𝐽)
7169, 70pm2.21ddne 3101 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝑖 = 𝑗)
72 simplr 767 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑖 = 1)
73 simpr 487 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑗 = 1)
7472, 73eqtr4d 2859 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑖 = 𝑗)
75 simpllr 774 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
7662adantr 483 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐽)
7737adantlr 713 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐾)
7875, 76, 773eqtr3d 2864 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝐽 = 𝐾)
79 s3f1.2 . . . . . . . . 9 (𝜑𝐽𝐾)
8079ad5antr 732 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝐽𝐾)
8178, 80pm2.21ddne 3101 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝑖 = 𝑗)
8255ad2antrr 724 . . . . . . 7 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
8371, 74, 81, 82mpjao3dan 1427 . . . . . 6 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → 𝑖 = 𝑗)
84 simpllr 774 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
85 simpr 487 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → 𝑖 = 2)
8685fveq2d 6674 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘2))
8735ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
8886, 87eqtrd 2856 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐾)
8988adantr 483 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐾)
9067adantlr 713 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐼)
9184, 89, 903eqtr3d 2864 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝐾 = 𝐼)
9240ad5antr 732 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝐾𝐼)
9391, 92pm2.21ddne 3101 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝑖 = 𝑗)
94 simpllr 774 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
9588adantr 483 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐾)
9624adantlr 713 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐽)
9794, 95, 963eqtr3rd 2865 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝐽 = 𝐾)
9879ad5antr 732 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝐽𝐾)
9997, 98pm2.21ddne 3101 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝑖 = 𝑗)
100 simplr 767 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑖 = 2)
101 simpr 487 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑗 = 2)
102100, 101eqtr4d 2859 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑖 = 𝑗)
10355ad2antrr 724 . . . . . . 7 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
10493, 99, 102, 103mpjao3dan 1427 . . . . . 6 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → 𝑖 = 𝑗)
10549eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩ ↔ 𝑖 ∈ {0, 1, 2}))
106105biimpa 479 . . . . . . . 8 ((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → 𝑖 ∈ {0, 1, 2})
107 vex 3497 . . . . . . . . 9 𝑖 ∈ V
108107eltp 4626 . . . . . . . 8 (𝑖 ∈ {0, 1, 2} ↔ (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
109106, 108sylib 220 . . . . . . 7 ((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
110109ad2antrr 724 . . . . . 6 ((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
11157, 83, 104, 110mpjao3dan 1427 . . . . 5 ((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) → 𝑖 = 𝑗)
112111ex 415 . . . 4 (((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → ((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗))
113112anasss 469 . . 3 ((𝜑 ∧ (𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩ ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩)) → ((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗))
114113ralrimivva 3191 . 2 (𝜑 → ∀𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩∀𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗))
115 dff13 7013 . 2 (⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷 ↔ (⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩⟶𝐷 ∧ ∀𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩∀𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗)))
1167, 114, 115sylanbrc 585 1 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3o 1082   = wceq 1537  wcel 2114  wne 3016  wral 3138  {ctp 4571  dom cdm 5555  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  2c2 11693  3c3 11694  ..^cfzo 13034  chash 13691  Word cword 13862  ⟨“cs3 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211
This theorem is referenced by:  cycpm3cl  30777  cycpm3cl2  30778  cyc3fv1  30779  cyc3fv2  30780  cyc3fv3  30781  cyc3co2  30782
  Copyright terms: Public domain W3C validator