Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  s3f1 Structured version   Visualization version   GIF version

Theorem s3f1 32875
Description: Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
s3f1.i (𝜑𝐼𝐷)
s3f1.j (𝜑𝐽𝐷)
s3f1.k (𝜑𝐾𝐷)
s3f1.1 (𝜑𝐼𝐽)
s3f1.2 (𝜑𝐽𝐾)
s3f1.3 (𝜑𝐾𝐼)
Assertion
Ref Expression
s3f1 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)

Proof of Theorem s3f1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 s3f1.i . . . . 5 (𝜑𝐼𝐷)
2 s3f1.j . . . . 5 (𝜑𝐽𝐷)
3 s3f1.k . . . . 5 (𝜑𝐾𝐷)
41, 2, 3s3cld 14845 . . . 4 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
5 wrdf 14490 . . . 4 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → ⟨“𝐼𝐽𝐾”⟩:(0..^(♯‘⟨“𝐼𝐽𝐾”⟩))⟶𝐷)
64, 5syl 17 . . 3 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:(0..^(♯‘⟨“𝐼𝐽𝐾”⟩))⟶𝐷)
76ffdmd 6721 . 2 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩⟶𝐷)
8 simplr 768 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑖 = 0)
9 simpr 484 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑗 = 0)
108, 9eqtr4d 2768 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑖 = 𝑗)
11 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
12 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → 𝑖 = 0)
1312fveq2d 6865 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘0))
14 s3fv0 14864 . . . . . . . . . . . . 13 (𝐼𝐷 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
151, 14syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
1615ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
1713, 16eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐼)
1817adantr 480 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐼)
19 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → 𝑗 = 1)
2019fveq2d 6865 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = (⟨“𝐼𝐽𝐾”⟩‘1))
21 s3fv1 14865 . . . . . . . . . . . . 13 (𝐽𝐷 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
2322ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
2420, 23eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐽)
2524adantlr 715 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐽)
2611, 18, 253eqtr3d 2773 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝐼 = 𝐽)
27 s3f1.1 . . . . . . . . 9 (𝜑𝐼𝐽)
2827ad5antr 734 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝐼𝐽)
2926, 28pm2.21ddne 3010 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝑖 = 𝑗)
30 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
3117adantr 480 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐼)
32 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → 𝑗 = 2)
3332fveq2d 6865 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = (⟨“𝐼𝐽𝐾”⟩‘2))
34 s3fv2 14866 . . . . . . . . . . . . 13 (𝐾𝐷 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
353, 34syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3635ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
3733, 36eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐾)
3837adantlr 715 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐾)
3930, 31, 383eqtr3rd 2774 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝐾 = 𝐼)
40 s3f1.3 . . . . . . . . 9 (𝜑𝐾𝐼)
4140ad5antr 734 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝐾𝐼)
4239, 41pm2.21ddne 3010 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝑖 = 𝑗)
43 wrddm 14493 . . . . . . . . . . . . . 14 (⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷 → dom ⟨“𝐼𝐽𝐾”⟩ = (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
444, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)))
45 s3len 14867 . . . . . . . . . . . . . . 15 (♯‘⟨“𝐼𝐽𝐾”⟩) = 3
4645oveq2i 7401 . . . . . . . . . . . . . 14 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = (0..^3)
47 fzo0to3tp 13720 . . . . . . . . . . . . . 14 (0..^3) = {0, 1, 2}
4846, 47eqtri 2753 . . . . . . . . . . . . 13 (0..^(♯‘⟨“𝐼𝐽𝐾”⟩)) = {0, 1, 2}
4944, 48eqtrdi 2781 . . . . . . . . . . . 12 (𝜑 → dom ⟨“𝐼𝐽𝐾”⟩ = {0, 1, 2})
5049eleq2d 2815 . . . . . . . . . . 11 (𝜑 → (𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩ ↔ 𝑗 ∈ {0, 1, 2}))
5150biimpa 476 . . . . . . . . . 10 ((𝜑𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → 𝑗 ∈ {0, 1, 2})
52 vex 3454 . . . . . . . . . . 11 𝑗 ∈ V
5352eltp 4656 . . . . . . . . . 10 (𝑗 ∈ {0, 1, 2} ↔ (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5451, 53sylib 218 . . . . . . . . 9 ((𝜑𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5554adantlr 715 . . . . . . . 8 (((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5655ad2antrr 726 . . . . . . 7 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
5710, 29, 42, 56mpjao3dan 1434 . . . . . 6 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 0) → 𝑖 = 𝑗)
58 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
59 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → 𝑖 = 1)
6059fveq2d 6865 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘1))
6122ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (⟨“𝐼𝐽𝐾”⟩‘1) = 𝐽)
6260, 61eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐽)
6362adantr 480 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐽)
64 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → 𝑗 = 0)
6564fveq2d 6865 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = (⟨“𝐼𝐽𝐾”⟩‘0))
6615ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘0) = 𝐼)
6765, 66eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐼)
6867adantlr 715 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐼)
6958, 63, 683eqtr3rd 2774 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝐼 = 𝐽)
7027ad5antr 734 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝐼𝐽)
7169, 70pm2.21ddne 3010 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝑖 = 𝑗)
72 simplr 768 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑖 = 1)
73 simpr 484 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑗 = 1)
7472, 73eqtr4d 2768 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑖 = 𝑗)
75 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
7662adantr 480 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐽)
7737adantlr 715 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐾)
7875, 76, 773eqtr3d 2773 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝐽 = 𝐾)
79 s3f1.2 . . . . . . . . 9 (𝜑𝐽𝐾)
8079ad5antr 734 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝐽𝐾)
8178, 80pm2.21ddne 3010 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝑖 = 𝑗)
8255ad2antrr 726 . . . . . . 7 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
8371, 74, 81, 82mpjao3dan 1434 . . . . . 6 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 1) → 𝑖 = 𝑗)
84 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
85 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → 𝑖 = 2)
8685fveq2d 6865 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘2))
8735ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (⟨“𝐼𝐽𝐾”⟩‘2) = 𝐾)
8886, 87eqtrd 2765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐾)
8988adantr 480 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐾)
9067adantlr 715 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐼)
9184, 89, 903eqtr3d 2773 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝐾 = 𝐼)
9240ad5antr 734 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝐾𝐼)
9391, 92pm2.21ddne 3010 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝑖 = 𝑗)
94 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗))
9588adantr 480 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑖) = 𝐾)
9624adantlr 715 . . . . . . . . 9 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (⟨“𝐼𝐽𝐾”⟩‘𝑗) = 𝐽)
9794, 95, 963eqtr3rd 2774 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝐽 = 𝐾)
9879ad5antr 734 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝐽𝐾)
9997, 98pm2.21ddne 3010 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝑖 = 𝑗)
100 simplr 768 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑖 = 2)
101 simpr 484 . . . . . . . 8 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑗 = 2)
102100, 101eqtr4d 2768 . . . . . . 7 ((((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑖 = 𝑗)
10355ad2antrr 726 . . . . . . 7 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2))
10493, 99, 102, 103mpjao3dan 1434 . . . . . 6 (((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) ∧ 𝑖 = 2) → 𝑖 = 𝑗)
10549eleq2d 2815 . . . . . . . . 9 (𝜑 → (𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩ ↔ 𝑖 ∈ {0, 1, 2}))
106105biimpa 476 . . . . . . . 8 ((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → 𝑖 ∈ {0, 1, 2})
107 vex 3454 . . . . . . . . 9 𝑖 ∈ V
108107eltp 4656 . . . . . . . 8 (𝑖 ∈ {0, 1, 2} ↔ (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
109106, 108sylib 218 . . . . . . 7 ((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
110109ad2antrr 726 . . . . . 6 ((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2))
11157, 83, 104, 110mpjao3dan 1434 . . . . 5 ((((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ (⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗)) → 𝑖 = 𝑗)
112111ex 412 . . . 4 (((𝜑𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩) ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩) → ((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗))
113112anasss 466 . . 3 ((𝜑 ∧ (𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩ ∧ 𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩)) → ((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗))
114113ralrimivva 3181 . 2 (𝜑 → ∀𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩∀𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗))
115 dff13 7232 . 2 (⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷 ↔ (⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩⟶𝐷 ∧ ∀𝑖 ∈ dom ⟨“𝐼𝐽𝐾”⟩∀𝑗 ∈ dom ⟨“𝐼𝐽𝐾”⟩((⟨“𝐼𝐽𝐾”⟩‘𝑖) = (⟨“𝐼𝐽𝐾”⟩‘𝑗) → 𝑖 = 𝑗)))
1167, 114, 115sylanbrc 583 1 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2926  wral 3045  {ctp 4596  dom cdm 5641  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  2c2 12248  3c3 12249  ..^cfzo 13622  chash 14302  Word cword 14485  ⟨“cs3 14815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822
This theorem is referenced by:  cycpm3cl  33099  cycpm3cl2  33100  cyc3fv1  33101  cyc3fv2  33102  cyc3fv3  33103  cyc3co2  33104
  Copyright terms: Public domain W3C validator