Step | Hyp | Ref
| Expression |
1 | | s3f1.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
2 | | s3f1.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
3 | | s3f1.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝐷) |
4 | 1, 2, 3 | s3cld 14513 |
. . . 4
⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
5 | | wrdf 14150 |
. . . 4
⊢
(〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷 → 〈“𝐼𝐽𝐾”〉:(0..^(♯‘〈“𝐼𝐽𝐾”〉))⟶𝐷) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:(0..^(♯‘〈“𝐼𝐽𝐾”〉))⟶𝐷) |
7 | 6 | ffdmd 6615 |
. 2
⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉⟶𝐷) |
8 | | simplr 765 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑖 = 0) |
9 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑗 = 0) |
10 | 8, 9 | eqtr4d 2781 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 0) → 𝑖 = 𝑗) |
11 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) |
12 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) → 𝑖 = 0) |
13 | 12 | fveq2d 6760 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘0)) |
14 | | s3fv0 14532 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
15 | 1, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
16 | 15 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
17 | 13, 16 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐼) |
18 | 17 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐼) |
19 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 1) → 𝑗 = 1) |
20 | 19 | fveq2d 6760 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑗) = (〈“𝐼𝐽𝐾”〉‘1)) |
21 | | s3fv1 14533 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
22 | 2, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
23 | 22 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
24 | 20, 23 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐽) |
25 | 24 | adantlr 711 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐽) |
26 | 11, 18, 25 | 3eqtr3d 2786 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝐼 = 𝐽) |
27 | | s3f1.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
28 | 27 | ad5antr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝐼 ≠ 𝐽) |
29 | 26, 28 | pm2.21ddne 3028 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 1) → 𝑖 = 𝑗) |
30 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) |
31 | 17 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐼) |
32 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 2) → 𝑗 = 2) |
33 | 32 | fveq2d 6760 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑗) = (〈“𝐼𝐽𝐾”〉‘2)) |
34 | | s3fv2 14534 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ 𝐷 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
35 | 3, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
36 | 35 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
37 | 33, 36 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐾) |
38 | 37 | adantlr 711 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐾) |
39 | 30, 31, 38 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝐾 = 𝐼) |
40 | | s3f1.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≠ 𝐼) |
41 | 40 | ad5antr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝐾 ≠ 𝐼) |
42 | 39, 41 | pm2.21ddne 3028 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) ∧ 𝑗 = 2) → 𝑖 = 𝑗) |
43 | | wrddm 14152 |
. . . . . . . . . . . . . 14
⊢
(〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷 → dom 〈“𝐼𝐽𝐾”〉 =
(0..^(♯‘〈“𝐼𝐽𝐾”〉))) |
44 | 4, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom 〈“𝐼𝐽𝐾”〉 =
(0..^(♯‘〈“𝐼𝐽𝐾”〉))) |
45 | | s3len 14535 |
. . . . . . . . . . . . . . 15
⊢
(♯‘〈“𝐼𝐽𝐾”〉) = 3 |
46 | 45 | oveq2i 7266 |
. . . . . . . . . . . . . 14
⊢
(0..^(♯‘〈“𝐼𝐽𝐾”〉)) = (0..^3) |
47 | | fzo0to3tp 13401 |
. . . . . . . . . . . . . 14
⊢ (0..^3) =
{0, 1, 2} |
48 | 46, 47 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢
(0..^(♯‘〈“𝐼𝐽𝐾”〉)) = {0, 1, 2} |
49 | 44, 48 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 〈“𝐼𝐽𝐾”〉 = {0, 1, 2}) |
50 | 49 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉 ↔ 𝑗 ∈ {0, 1, 2})) |
51 | 50 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) → 𝑗 ∈ {0, 1, 2}) |
52 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑗 ∈ V |
53 | 52 | eltp 4621 |
. . . . . . . . . 10
⊢ (𝑗 ∈ {0, 1, 2} ↔ (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2)) |
54 | 51, 53 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2)) |
55 | 54 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2)) |
56 | 55 | ad2antrr 722 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2)) |
57 | 10, 29, 42, 56 | mpjao3dan 1429 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 0) → 𝑖 = 𝑗) |
58 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) |
59 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) → 𝑖 = 1) |
60 | 59 | fveq2d 6760 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘1)) |
61 | 22 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) → (〈“𝐼𝐽𝐾”〉‘1) = 𝐽) |
62 | 60, 61 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐽) |
63 | 62 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐽) |
64 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 0) → 𝑗 = 0) |
65 | 64 | fveq2d 6760 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑗) = (〈“𝐼𝐽𝐾”〉‘0)) |
66 | 15 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘0) = 𝐼) |
67 | 65, 66 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐼) |
68 | 67 | adantlr 711 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐼) |
69 | 58, 63, 68 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝐼 = 𝐽) |
70 | 27 | ad5antr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝐼 ≠ 𝐽) |
71 | 69, 70 | pm2.21ddne 3028 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 0) → 𝑖 = 𝑗) |
72 | | simplr 765 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑖 = 1) |
73 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑗 = 1) |
74 | 72, 73 | eqtr4d 2781 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 1) → 𝑖 = 𝑗) |
75 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) |
76 | 62 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐽) |
77 | 37 | adantlr 711 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐾) |
78 | 75, 76, 77 | 3eqtr3d 2786 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝐽 = 𝐾) |
79 | | s3f1.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ≠ 𝐾) |
80 | 79 | ad5antr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝐽 ≠ 𝐾) |
81 | 78, 80 | pm2.21ddne 3028 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) ∧ 𝑗 = 2) → 𝑖 = 𝑗) |
82 | 55 | ad2antrr 722 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2)) |
83 | 71, 74, 81, 82 | mpjao3dan 1429 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 1) → 𝑖 = 𝑗) |
84 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) |
85 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) → 𝑖 = 2) |
86 | 85 | fveq2d 6760 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘2)) |
87 | 35 | ad4antr 728 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) → (〈“𝐼𝐽𝐾”〉‘2) = 𝐾) |
88 | 86, 87 | eqtrd 2778 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐾) |
89 | 88 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐾) |
90 | 67 | adantlr 711 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐼) |
91 | 84, 89, 90 | 3eqtr3d 2786 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝐾 = 𝐼) |
92 | 40 | ad5antr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝐾 ≠ 𝐼) |
93 | 91, 92 | pm2.21ddne 3028 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 0) → 𝑖 = 𝑗) |
94 | | simpllr 772 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) |
95 | 88 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑖) = 𝐾) |
96 | 24 | adantlr 711 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → (〈“𝐼𝐽𝐾”〉‘𝑗) = 𝐽) |
97 | 94, 95, 96 | 3eqtr3rd 2787 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝐽 = 𝐾) |
98 | 79 | ad5antr 730 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝐽 ≠ 𝐾) |
99 | 97, 98 | pm2.21ddne 3028 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 1) → 𝑖 = 𝑗) |
100 | | simplr 765 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑖 = 2) |
101 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑗 = 2) |
102 | 100, 101 | eqtr4d 2781 |
. . . . . . 7
⊢
((((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) ∧ 𝑗 = 2) → 𝑖 = 𝑗) |
103 | 55 | ad2antrr 722 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) → (𝑗 = 0 ∨ 𝑗 = 1 ∨ 𝑗 = 2)) |
104 | 93, 99, 102, 103 | mpjao3dan 1429 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) ∧ 𝑖 = 2) → 𝑖 = 𝑗) |
105 | 49 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉 ↔ 𝑖 ∈ {0, 1, 2})) |
106 | 105 | biimpa 476 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) → 𝑖 ∈ {0, 1, 2}) |
107 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑖 ∈ V |
108 | 107 | eltp 4621 |
. . . . . . . 8
⊢ (𝑖 ∈ {0, 1, 2} ↔ (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
109 | 106, 108 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
110 | 109 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
111 | 57, 83, 104, 110 | mpjao3dan 1429 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ (〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗)) → 𝑖 = 𝑗) |
112 | 111 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉) ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉) → ((〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗) → 𝑖 = 𝑗)) |
113 | 112 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉 ∧ 𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉)) → ((〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗) → 𝑖 = 𝑗)) |
114 | 113 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉∀𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉((〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗) → 𝑖 = 𝑗)) |
115 | | dff13 7109 |
. 2
⊢
(〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷 ↔ (〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉⟶𝐷 ∧ ∀𝑖 ∈ dom 〈“𝐼𝐽𝐾”〉∀𝑗 ∈ dom 〈“𝐼𝐽𝐾”〉((〈“𝐼𝐽𝐾”〉‘𝑖) = (〈“𝐼𝐽𝐾”〉‘𝑗) → 𝑖 = 𝑗))) |
116 | 7, 114, 115 | sylanbrc 582 |
1
⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |