MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsn Structured version   Visualization version   GIF version

Theorem dprdsn 20019
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsn ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))

Proof of Theorem dprdsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2735 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2735 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 subgrcl 19114 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
54adantl 481 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
6 snex 5406 . . . 4 {𝐴} ∈ V
76a1i 11 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝐴} ∈ V)
8 f1osng 6859 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}–1-1-onto→{𝑆})
9 f1of 6818 . . . . 5 ({⟨𝐴, 𝑆⟩}:{𝐴}–1-1-onto→{𝑆} → {⟨𝐴, 𝑆⟩}:{𝐴}⟶{𝑆})
108, 9syl 17 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}⟶{𝑆})
11 simpr 484 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
1211snssd 4785 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝑆} ⊆ (SubGrp‘𝐺))
1310, 12fssd 6723 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}⟶(SubGrp‘𝐺))
14 simpr1 1195 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 ∈ {𝐴})
15 elsni 4618 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
1614, 15syl 17 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 = 𝐴)
17 simpr2 1196 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑦 ∈ {𝐴})
18 elsni 4618 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
1917, 18syl 17 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑦 = 𝐴)
2016, 19eqtr4d 2773 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
21 simpr3 1197 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥𝑦)
2220, 21pm2.21ddne 3016 . . 3 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → ({⟨𝐴, 𝑆⟩}‘𝑥) ⊆ ((Cntz‘𝐺)‘({⟨𝐴, 𝑆⟩}‘𝑦)))
235adantr 480 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → 𝐺 ∈ Grp)
24 eqid 2735 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2524subgacs 19144 . . . . . . . 8 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
26 acsmre 17664 . . . . . . . 8 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2723, 25, 263syl 18 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2815adantl 481 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐴)
2928sneqd 4613 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {𝑥} = {𝐴})
3029difeq2d 4101 . . . . . . . . . . . . 13 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({𝐴} ∖ {𝑥}) = ({𝐴} ∖ {𝐴}))
31 difid 4351 . . . . . . . . . . . . 13 ({𝐴} ∖ {𝐴}) = ∅
3230, 31eqtrdi 2786 . . . . . . . . . . . 12 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({𝐴} ∖ {𝑥}) = ∅)
3332imaeq2d 6047 . . . . . . . . . . 11 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ({⟨𝐴, 𝑆⟩} “ ∅))
34 ima0 6064 . . . . . . . . . . 11 ({⟨𝐴, 𝑆⟩} “ ∅) = ∅
3533, 34eqtrdi 2786 . . . . . . . . . 10 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
3635unieqd 4896 . . . . . . . . 9 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
37 uni0 4911 . . . . . . . . 9 ∅ = ∅
3836, 37eqtrdi 2786 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
39 0ss 4375 . . . . . . . . 9 ∅ ⊆ {(0g𝐺)}
4039a1i 11 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ∅ ⊆ {(0g𝐺)})
4138, 40eqsstrd 3993 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) ⊆ {(0g𝐺)})
4220subg 19134 . . . . . . . 8 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
4323, 42syl 17 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
443mrcsscl 17632 . . . . . . 7 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) ⊆ {(0g𝐺)} ∧ {(0g𝐺)} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ {(0g𝐺)})
4527, 41, 43, 44syl3anc 1373 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ {(0g𝐺)})
462subg0cl 19117 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
4746ad2antlr 727 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (0g𝐺) ∈ 𝑆)
4815fveq2d 6880 . . . . . . . . 9 (𝑥 ∈ {𝐴} → ({⟨𝐴, 𝑆⟩}‘𝑥) = ({⟨𝐴, 𝑆⟩}‘𝐴))
49 fvsng 7172 . . . . . . . . 9 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ({⟨𝐴, 𝑆⟩}‘𝐴) = 𝑆)
5048, 49sylan9eqr 2792 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩}‘𝑥) = 𝑆)
5147, 50eleqtrrd 2837 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (0g𝐺) ∈ ({⟨𝐴, 𝑆⟩}‘𝑥))
5251snssd 4785 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {(0g𝐺)} ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥))
5345, 52sstrd 3969 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥))
54 sseqin2 4198 . . . . 5 (((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥) ↔ (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) = ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))))
5553, 54sylib 218 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) = ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))))
5655, 45eqsstrd 3993 . . 3 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) ⊆ {(0g𝐺)})
571, 2, 3, 5, 7, 13, 22, 56dmdprdd 19982 . 2 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝐺dom DProd {⟨𝐴, 𝑆⟩})
583dprdspan 20010 . . . 4 (𝐺dom DProd {⟨𝐴, 𝑆⟩} → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}))
5957, 58syl 17 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}))
60 rnsnopg 6210 . . . . . . . 8 (𝐴𝑉 → ran {⟨𝐴, 𝑆⟩} = {𝑆})
6160adantr 480 . . . . . . 7 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = {𝑆})
6261unieqd 4896 . . . . . 6 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = {𝑆})
63 unisng 4901 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
6463adantl 481 . . . . . 6 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝑆} = 𝑆)
6562, 64eqtrd 2770 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = 𝑆)
6665fveq2d 6880 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘𝑆))
675, 25, 263syl 18 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
683mrcid 17625 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘𝑆) = 𝑆)
6967, 68sylancom 588 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘𝑆) = 𝑆)
7066, 69eqtrd 2770 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}) = 𝑆)
7159, 70eqtrd 2770 . 2 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆)
7257, 71jca 511 1 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   class class class wbr 5119  dom cdm 5654  ran crn 5655  cima 5657  wf 6527  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  Basecbs 17228  0gc0g 17453  Moorecmre 17594  mrClscmrc 17595  ACScacs 17597  Grpcgrp 18916  SubGrpcsubg 19103  Cntzccntz 19298   DProd cdprd 19976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-cmn 19763  df-dprd 19978
This theorem is referenced by:  dprd2da  20025  dmdprdpr  20032  dprdpr  20033  dpjlem  20034  pgpfaclem1  20064
  Copyright terms: Public domain W3C validator