MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsn Structured version   Visualization version   GIF version

Theorem dprdsn 19151
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsn ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))

Proof of Theorem dprdsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2798 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2798 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 subgrcl 18276 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
54adantl 485 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
6 snex 5297 . . . 4 {𝐴} ∈ V
76a1i 11 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝐴} ∈ V)
8 f1osng 6630 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}–1-1-onto→{𝑆})
9 f1of 6590 . . . . 5 ({⟨𝐴, 𝑆⟩}:{𝐴}–1-1-onto→{𝑆} → {⟨𝐴, 𝑆⟩}:{𝐴}⟶{𝑆})
108, 9syl 17 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}⟶{𝑆})
11 simpr 488 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
1211snssd 4702 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝑆} ⊆ (SubGrp‘𝐺))
1310, 12fssd 6502 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}⟶(SubGrp‘𝐺))
14 simpr1 1191 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 ∈ {𝐴})
15 elsni 4542 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
1614, 15syl 17 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 = 𝐴)
17 simpr2 1192 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑦 ∈ {𝐴})
18 elsni 4542 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
1917, 18syl 17 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑦 = 𝐴)
2016, 19eqtr4d 2836 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
21 simpr3 1193 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥𝑦)
2220, 21pm2.21ddne 3071 . . 3 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → ({⟨𝐴, 𝑆⟩}‘𝑥) ⊆ ((Cntz‘𝐺)‘({⟨𝐴, 𝑆⟩}‘𝑦)))
235adantr 484 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → 𝐺 ∈ Grp)
24 eqid 2798 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2524subgacs 18305 . . . . . . . 8 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
26 acsmre 16915 . . . . . . . 8 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2723, 25, 263syl 18 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2815adantl 485 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐴)
2928sneqd 4537 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {𝑥} = {𝐴})
3029difeq2d 4050 . . . . . . . . . . . . 13 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({𝐴} ∖ {𝑥}) = ({𝐴} ∖ {𝐴}))
31 difid 4284 . . . . . . . . . . . . 13 ({𝐴} ∖ {𝐴}) = ∅
3230, 31eqtrdi 2849 . . . . . . . . . . . 12 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({𝐴} ∖ {𝑥}) = ∅)
3332imaeq2d 5896 . . . . . . . . . . 11 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ({⟨𝐴, 𝑆⟩} “ ∅))
34 ima0 5912 . . . . . . . . . . 11 ({⟨𝐴, 𝑆⟩} “ ∅) = ∅
3533, 34eqtrdi 2849 . . . . . . . . . 10 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
3635unieqd 4814 . . . . . . . . 9 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
37 uni0 4828 . . . . . . . . 9 ∅ = ∅
3836, 37eqtrdi 2849 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
39 0ss 4304 . . . . . . . . 9 ∅ ⊆ {(0g𝐺)}
4039a1i 11 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ∅ ⊆ {(0g𝐺)})
4138, 40eqsstrd 3953 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) ⊆ {(0g𝐺)})
4220subg 18296 . . . . . . . 8 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
4323, 42syl 17 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
443mrcsscl 16883 . . . . . . 7 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) ⊆ {(0g𝐺)} ∧ {(0g𝐺)} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ {(0g𝐺)})
4527, 41, 43, 44syl3anc 1368 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ {(0g𝐺)})
462subg0cl 18279 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
4746ad2antlr 726 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (0g𝐺) ∈ 𝑆)
4815fveq2d 6649 . . . . . . . . 9 (𝑥 ∈ {𝐴} → ({⟨𝐴, 𝑆⟩}‘𝑥) = ({⟨𝐴, 𝑆⟩}‘𝐴))
49 fvsng 6919 . . . . . . . . 9 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ({⟨𝐴, 𝑆⟩}‘𝐴) = 𝑆)
5048, 49sylan9eqr 2855 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩}‘𝑥) = 𝑆)
5147, 50eleqtrrd 2893 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (0g𝐺) ∈ ({⟨𝐴, 𝑆⟩}‘𝑥))
5251snssd 4702 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {(0g𝐺)} ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥))
5345, 52sstrd 3925 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥))
54 sseqin2 4142 . . . . 5 (((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥) ↔ (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) = ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))))
5553, 54sylib 221 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) = ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))))
5655, 45eqsstrd 3953 . . 3 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) ⊆ {(0g𝐺)})
571, 2, 3, 5, 7, 13, 22, 56dmdprdd 19114 . 2 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝐺dom DProd {⟨𝐴, 𝑆⟩})
583dprdspan 19142 . . . 4 (𝐺dom DProd {⟨𝐴, 𝑆⟩} → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}))
5957, 58syl 17 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}))
60 rnsnopg 6045 . . . . . . . 8 (𝐴𝑉 → ran {⟨𝐴, 𝑆⟩} = {𝑆})
6160adantr 484 . . . . . . 7 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = {𝑆})
6261unieqd 4814 . . . . . 6 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = {𝑆})
63 unisng 4819 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
6463adantl 485 . . . . . 6 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝑆} = 𝑆)
6562, 64eqtrd 2833 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = 𝑆)
6665fveq2d 6649 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘𝑆))
675, 25, 263syl 18 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
683mrcid 16876 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘𝑆) = 𝑆)
6967, 68sylancom 591 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘𝑆) = 𝑆)
7066, 69eqtrd 2833 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}) = 𝑆)
7159, 70eqtrd 2833 . 2 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆)
7257, 71jca 515 1 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  cin 3880  wss 3881  c0 4243  {csn 4525  cop 4531   cuni 4800   class class class wbr 5030  dom cdm 5519  ran crn 5520  cima 5522  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Basecbs 16475  0gc0g 16705  Moorecmre 16845  mrClscmrc 16846  ACScacs 16848  Grpcgrp 18095  SubGrpcsubg 18265  Cntzccntz 18437   DProd cdprd 19108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-cntz 18439  df-oppg 18466  df-cmn 18900  df-dprd 19110
This theorem is referenced by:  dprd2da  19157  dmdprdpr  19164  dprdpr  19165  dpjlem  19166  pgpfaclem1  19196
  Copyright terms: Public domain W3C validator