Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . 3
β’
(CntzβπΊ) =
(CntzβπΊ) |
2 | | eqid 2733 |
. . 3
β’
(0gβπΊ) = (0gβπΊ) |
3 | | eqid 2733 |
. . 3
β’
(mrClsβ(SubGrpβπΊ)) = (mrClsβ(SubGrpβπΊ)) |
4 | | subgrcl 19006 |
. . . 4
β’ (π β (SubGrpβπΊ) β πΊ β Grp) |
5 | 4 | adantl 483 |
. . 3
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β πΊ β Grp) |
6 | | snex 5431 |
. . . 4
β’ {π΄} β V |
7 | 6 | a1i 11 |
. . 3
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β {π΄} β V) |
8 | | f1osng 6872 |
. . . . 5
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β {β¨π΄, πβ©}:{π΄}β1-1-ontoβ{π}) |
9 | | f1of 6831 |
. . . . 5
β’
({β¨π΄, πβ©}:{π΄}β1-1-ontoβ{π} β {β¨π΄, πβ©}:{π΄}βΆ{π}) |
10 | 8, 9 | syl 17 |
. . . 4
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β {β¨π΄, πβ©}:{π΄}βΆ{π}) |
11 | | simpr 486 |
. . . . 5
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β π β (SubGrpβπΊ)) |
12 | 11 | snssd 4812 |
. . . 4
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β {π} β (SubGrpβπΊ)) |
13 | 10, 12 | fssd 6733 |
. . 3
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β {β¨π΄, πβ©}:{π΄}βΆ(SubGrpβπΊ)) |
14 | | simpr1 1195 |
. . . . . 6
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β π₯ β {π΄}) |
15 | | elsni 4645 |
. . . . . 6
β’ (π₯ β {π΄} β π₯ = π΄) |
16 | 14, 15 | syl 17 |
. . . . 5
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β π₯ = π΄) |
17 | | simpr2 1196 |
. . . . . 6
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β π¦ β {π΄}) |
18 | | elsni 4645 |
. . . . . 6
β’ (π¦ β {π΄} β π¦ = π΄) |
19 | 17, 18 | syl 17 |
. . . . 5
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β π¦ = π΄) |
20 | 16, 19 | eqtr4d 2776 |
. . . 4
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β π₯ = π¦) |
21 | | simpr3 1197 |
. . . 4
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β π₯ β π¦) |
22 | 20, 21 | pm2.21ddne 3027 |
. . 3
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ (π₯ β {π΄} β§ π¦ β {π΄} β§ π₯ β π¦)) β ({β¨π΄, πβ©}βπ₯) β ((CntzβπΊ)β({β¨π΄, πβ©}βπ¦))) |
23 | 5 | adantr 482 |
. . . . . . . 8
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β πΊ β Grp) |
24 | | eqid 2733 |
. . . . . . . . 9
β’
(BaseβπΊ) =
(BaseβπΊ) |
25 | 24 | subgacs 19036 |
. . . . . . . 8
β’ (πΊ β Grp β
(SubGrpβπΊ) β
(ACSβ(BaseβπΊ))) |
26 | | acsmre 17593 |
. . . . . . . 8
β’
((SubGrpβπΊ)
β (ACSβ(BaseβπΊ)) β (SubGrpβπΊ) β (Mooreβ(BaseβπΊ))) |
27 | 23, 25, 26 | 3syl 18 |
. . . . . . 7
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β (SubGrpβπΊ) β (Mooreβ(BaseβπΊ))) |
28 | 15 | adantl 483 |
. . . . . . . . . . . . . . 15
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β π₯ = π΄) |
29 | 28 | sneqd 4640 |
. . . . . . . . . . . . . 14
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β {π₯} = {π΄}) |
30 | 29 | difeq2d 4122 |
. . . . . . . . . . . . 13
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ({π΄} β {π₯}) = ({π΄} β {π΄})) |
31 | | difid 4370 |
. . . . . . . . . . . . 13
β’ ({π΄} β {π΄}) = β
|
32 | 30, 31 | eqtrdi 2789 |
. . . . . . . . . . . 12
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ({π΄} β {π₯}) = β
) |
33 | 32 | imaeq2d 6058 |
. . . . . . . . . . 11
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ({β¨π΄, πβ©} β ({π΄} β {π₯})) = ({β¨π΄, πβ©} β β
)) |
34 | | ima0 6074 |
. . . . . . . . . . 11
β’
({β¨π΄, πβ©} β β
) =
β
|
35 | 33, 34 | eqtrdi 2789 |
. . . . . . . . . 10
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ({β¨π΄, πβ©} β ({π΄} β {π₯})) = β
) |
36 | 35 | unieqd 4922 |
. . . . . . . . 9
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β βͺ
({β¨π΄, πβ©} β ({π΄} β {π₯})) = βͺ
β
) |
37 | | uni0 4939 |
. . . . . . . . 9
β’ βͺ β
= β
|
38 | 36, 37 | eqtrdi 2789 |
. . . . . . . 8
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β βͺ
({β¨π΄, πβ©} β ({π΄} β {π₯})) = β
) |
39 | | 0ss 4396 |
. . . . . . . . 9
β’ β
β {(0gβπΊ)} |
40 | 39 | a1i 11 |
. . . . . . . 8
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β β
β
{(0gβπΊ)}) |
41 | 38, 40 | eqsstrd 4020 |
. . . . . . 7
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β βͺ
({β¨π΄, πβ©} β ({π΄} β {π₯})) β {(0gβπΊ)}) |
42 | 2 | 0subg 19026 |
. . . . . . . 8
β’ (πΊ β Grp β
{(0gβπΊ)}
β (SubGrpβπΊ)) |
43 | 23, 42 | syl 17 |
. . . . . . 7
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β {(0gβπΊ)} β (SubGrpβπΊ)) |
44 | 3 | mrcsscl 17561 |
. . . . . . 7
β’
(((SubGrpβπΊ)
β (Mooreβ(BaseβπΊ)) β§ βͺ
({β¨π΄, πβ©} β ({π΄} β {π₯})) β {(0gβπΊ)} β§
{(0gβπΊ)}
β (SubGrpβπΊ))
β ((mrClsβ(SubGrpβπΊ))ββͺ
({β¨π΄, πβ©} β ({π΄} β {π₯}))) β {(0gβπΊ)}) |
45 | 27, 41, 43, 44 | syl3anc 1372 |
. . . . . 6
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯}))) β {(0gβπΊ)}) |
46 | 2 | subg0cl 19009 |
. . . . . . . . 9
β’ (π β (SubGrpβπΊ) β
(0gβπΊ)
β π) |
47 | 46 | ad2antlr 726 |
. . . . . . . 8
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β (0gβπΊ) β π) |
48 | 15 | fveq2d 6893 |
. . . . . . . . 9
β’ (π₯ β {π΄} β ({β¨π΄, πβ©}βπ₯) = ({β¨π΄, πβ©}βπ΄)) |
49 | | fvsng 7175 |
. . . . . . . . 9
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β ({β¨π΄, πβ©}βπ΄) = π) |
50 | 48, 49 | sylan9eqr 2795 |
. . . . . . . 8
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ({β¨π΄, πβ©}βπ₯) = π) |
51 | 47, 50 | eleqtrrd 2837 |
. . . . . . 7
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β (0gβπΊ) β ({β¨π΄, πβ©}βπ₯)) |
52 | 51 | snssd 4812 |
. . . . . 6
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β {(0gβπΊ)} β ({β¨π΄, πβ©}βπ₯)) |
53 | 45, 52 | sstrd 3992 |
. . . . 5
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯}))) β ({β¨π΄, πβ©}βπ₯)) |
54 | | sseqin2 4215 |
. . . . 5
β’
(((mrClsβ(SubGrpβπΊ))ββͺ
({β¨π΄, πβ©} β ({π΄} β {π₯}))) β ({β¨π΄, πβ©}βπ₯) β (({β¨π΄, πβ©}βπ₯) β© ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯})))) = ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯})))) |
55 | 53, 54 | sylib 217 |
. . . 4
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β (({β¨π΄, πβ©}βπ₯) β© ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯})))) = ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯})))) |
56 | 55, 45 | eqsstrd 4020 |
. . 3
β’ (((π΄ β π β§ π β (SubGrpβπΊ)) β§ π₯ β {π΄}) β (({β¨π΄, πβ©}βπ₯) β© ((mrClsβ(SubGrpβπΊ))ββͺ ({β¨π΄, πβ©} β ({π΄} β {π₯})))) β {(0gβπΊ)}) |
57 | 1, 2, 3, 5, 7, 13,
22, 56 | dmdprdd 19864 |
. 2
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β πΊdom DProd {β¨π΄, πβ©}) |
58 | 3 | dprdspan 19892 |
. . . 4
β’ (πΊdom DProd {β¨π΄, πβ©} β (πΊ DProd {β¨π΄, πβ©}) = ((mrClsβ(SubGrpβπΊ))ββͺ ran {β¨π΄, πβ©})) |
59 | 57, 58 | syl 17 |
. . 3
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β (πΊ DProd {β¨π΄, πβ©}) = ((mrClsβ(SubGrpβπΊ))ββͺ ran {β¨π΄, πβ©})) |
60 | | rnsnopg 6218 |
. . . . . . . 8
β’ (π΄ β π β ran {β¨π΄, πβ©} = {π}) |
61 | 60 | adantr 482 |
. . . . . . 7
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β ran {β¨π΄, πβ©} = {π}) |
62 | 61 | unieqd 4922 |
. . . . . 6
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β βͺ ran
{β¨π΄, πβ©} = βͺ
{π}) |
63 | | unisng 4929 |
. . . . . . 7
β’ (π β (SubGrpβπΊ) β βͺ {π}
= π) |
64 | 63 | adantl 483 |
. . . . . 6
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β βͺ
{π} = π) |
65 | 62, 64 | eqtrd 2773 |
. . . . 5
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β βͺ ran
{β¨π΄, πβ©} = π) |
66 | 65 | fveq2d 6893 |
. . . 4
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β ((mrClsβ(SubGrpβπΊ))ββͺ ran {β¨π΄, πβ©}) = ((mrClsβ(SubGrpβπΊ))βπ)) |
67 | 5, 25, 26 | 3syl 18 |
. . . . 5
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β (SubGrpβπΊ) β (Mooreβ(BaseβπΊ))) |
68 | 3 | mrcid 17554 |
. . . . 5
β’
(((SubGrpβπΊ)
β (Mooreβ(BaseβπΊ)) β§ π β (SubGrpβπΊ)) β ((mrClsβ(SubGrpβπΊ))βπ) = π) |
69 | 67, 68 | sylancom 589 |
. . . 4
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β ((mrClsβ(SubGrpβπΊ))βπ) = π) |
70 | 66, 69 | eqtrd 2773 |
. . 3
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β ((mrClsβ(SubGrpβπΊ))ββͺ ran {β¨π΄, πβ©}) = π) |
71 | 59, 70 | eqtrd 2773 |
. 2
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β (πΊ DProd {β¨π΄, πβ©}) = π) |
72 | 57, 71 | jca 513 |
1
β’ ((π΄ β π β§ π β (SubGrpβπΊ)) β (πΊdom DProd {β¨π΄, πβ©} β§ (πΊ DProd {β¨π΄, πβ©}) = π)) |