MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsn Structured version   Visualization version   GIF version

Theorem dprdsn 19554
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsn ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))

Proof of Theorem dprdsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2738 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2738 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 subgrcl 18675 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
54adantl 481 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Grp)
6 snex 5349 . . . 4 {𝐴} ∈ V
76a1i 11 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝐴} ∈ V)
8 f1osng 6740 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}–1-1-onto→{𝑆})
9 f1of 6700 . . . . 5 ({⟨𝐴, 𝑆⟩}:{𝐴}–1-1-onto→{𝑆} → {⟨𝐴, 𝑆⟩}:{𝐴}⟶{𝑆})
108, 9syl 17 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}⟶{𝑆})
11 simpr 484 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
1211snssd 4739 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝑆} ⊆ (SubGrp‘𝐺))
1310, 12fssd 6602 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {⟨𝐴, 𝑆⟩}:{𝐴}⟶(SubGrp‘𝐺))
14 simpr1 1192 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 ∈ {𝐴})
15 elsni 4575 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
1614, 15syl 17 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 = 𝐴)
17 simpr2 1193 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑦 ∈ {𝐴})
18 elsni 4575 . . . . . 6 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
1917, 18syl 17 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑦 = 𝐴)
2016, 19eqtr4d 2781 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥 = 𝑦)
21 simpr3 1194 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → 𝑥𝑦)
2220, 21pm2.21ddne 3028 . . 3 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴} ∧ 𝑥𝑦)) → ({⟨𝐴, 𝑆⟩}‘𝑥) ⊆ ((Cntz‘𝐺)‘({⟨𝐴, 𝑆⟩}‘𝑦)))
235adantr 480 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → 𝐺 ∈ Grp)
24 eqid 2738 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2524subgacs 18704 . . . . . . . 8 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
26 acsmre 17278 . . . . . . . 8 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2723, 25, 263syl 18 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2815adantl 481 . . . . . . . . . . . . . . 15 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐴)
2928sneqd 4570 . . . . . . . . . . . . . 14 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {𝑥} = {𝐴})
3029difeq2d 4053 . . . . . . . . . . . . 13 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({𝐴} ∖ {𝑥}) = ({𝐴} ∖ {𝐴}))
31 difid 4301 . . . . . . . . . . . . 13 ({𝐴} ∖ {𝐴}) = ∅
3230, 31eqtrdi 2795 . . . . . . . . . . . 12 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({𝐴} ∖ {𝑥}) = ∅)
3332imaeq2d 5958 . . . . . . . . . . 11 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ({⟨𝐴, 𝑆⟩} “ ∅))
34 ima0 5974 . . . . . . . . . . 11 ({⟨𝐴, 𝑆⟩} “ ∅) = ∅
3533, 34eqtrdi 2795 . . . . . . . . . 10 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
3635unieqd 4850 . . . . . . . . 9 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
37 uni0 4866 . . . . . . . . 9 ∅ = ∅
3836, 37eqtrdi 2795 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) = ∅)
39 0ss 4327 . . . . . . . . 9 ∅ ⊆ {(0g𝐺)}
4039a1i 11 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ∅ ⊆ {(0g𝐺)})
4138, 40eqsstrd 3955 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) ⊆ {(0g𝐺)})
4220subg 18695 . . . . . . . 8 (𝐺 ∈ Grp → {(0g𝐺)} ∈ (SubGrp‘𝐺))
4323, 42syl 17 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {(0g𝐺)} ∈ (SubGrp‘𝐺))
443mrcsscl 17246 . . . . . . 7 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})) ⊆ {(0g𝐺)} ∧ {(0g𝐺)} ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ {(0g𝐺)})
4527, 41, 43, 44syl3anc 1369 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ {(0g𝐺)})
462subg0cl 18678 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
4746ad2antlr 723 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (0g𝐺) ∈ 𝑆)
4815fveq2d 6760 . . . . . . . . 9 (𝑥 ∈ {𝐴} → ({⟨𝐴, 𝑆⟩}‘𝑥) = ({⟨𝐴, 𝑆⟩}‘𝐴))
49 fvsng 7034 . . . . . . . . 9 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ({⟨𝐴, 𝑆⟩}‘𝐴) = 𝑆)
5048, 49sylan9eqr 2801 . . . . . . . 8 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ({⟨𝐴, 𝑆⟩}‘𝑥) = 𝑆)
5147, 50eleqtrrd 2842 . . . . . . 7 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (0g𝐺) ∈ ({⟨𝐴, 𝑆⟩}‘𝑥))
5251snssd 4739 . . . . . 6 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → {(0g𝐺)} ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥))
5345, 52sstrd 3927 . . . . 5 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥))
54 sseqin2 4146 . . . . 5 (((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))) ⊆ ({⟨𝐴, 𝑆⟩}‘𝑥) ↔ (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) = ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))))
5553, 54sylib 217 . . . 4 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) = ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥}))))
5655, 45eqsstrd 3955 . . 3 (((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ {𝐴}) → (({⟨𝐴, 𝑆⟩}‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ({⟨𝐴, 𝑆⟩} “ ({𝐴} ∖ {𝑥})))) ⊆ {(0g𝐺)})
571, 2, 3, 5, 7, 13, 22, 56dmdprdd 19517 . 2 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → 𝐺dom DProd {⟨𝐴, 𝑆⟩})
583dprdspan 19545 . . . 4 (𝐺dom DProd {⟨𝐴, 𝑆⟩} → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}))
5957, 58syl 17 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}))
60 rnsnopg 6113 . . . . . . . 8 (𝐴𝑉 → ran {⟨𝐴, 𝑆⟩} = {𝑆})
6160adantr 480 . . . . . . 7 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = {𝑆})
6261unieqd 4850 . . . . . 6 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = {𝑆})
63 unisng 4857 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → {𝑆} = 𝑆)
6463adantl 481 . . . . . 6 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → {𝑆} = 𝑆)
6562, 64eqtrd 2778 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ran {⟨𝐴, 𝑆⟩} = 𝑆)
6665fveq2d 6760 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}) = ((mrCls‘(SubGrp‘𝐺))‘𝑆))
675, 25, 263syl 18 . . . . 5 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
683mrcid 17239 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘𝑆) = 𝑆)
6967, 68sylancom 587 . . . 4 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘𝑆) = 𝑆)
7066, 69eqtrd 2778 . . 3 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran {⟨𝐴, 𝑆⟩}) = 𝑆)
7159, 70eqtrd 2778 . 2 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆)
7257, 71jca 511 1 ((𝐴𝑉𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨𝐴, 𝑆⟩} ∧ (𝐺 DProd {⟨𝐴, 𝑆⟩}) = 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  dom cdm 5580  ran crn 5581  cima 5583  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Grpcgrp 18492  SubGrpcsubg 18664  Cntzccntz 18836   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-cmn 19303  df-dprd 19513
This theorem is referenced by:  dprd2da  19560  dmdprdpr  19567  dprdpr  19568  dpjlem  19569  pgpfaclem1  19599
  Copyright terms: Public domain W3C validator