| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ig1pmindeg | Structured version Visualization version GIF version | ||
| Description: The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ig1pirred.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ig1pirred.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
| ig1pirred.u | ⊢ 𝑈 = (Base‘𝑃) |
| ig1pirred.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| ig1pirred.1 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) |
| ig1pmindeg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ig1pmindeg.o | ⊢ 0 = (0g‘𝑃) |
| ig1pmindeg.2 | ⊢ (𝜑 → 𝐹 ∈ 𝐼) |
| ig1pmindeg.3 | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
| Ref | Expression |
|---|---|
| ig1pmindeg | ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ig1pmindeg.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐼) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ 𝐼) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐼 = { 0 }) | |
| 4 | 2, 3 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ { 0 }) |
| 5 | elsni 4606 | . . . 4 ⊢ (𝐹 ∈ { 0 } → 𝐹 = 0 ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 = 0 ) |
| 7 | ig1pmindeg.3 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ≠ 0 ) |
| 9 | 6, 8 | pm2.21ddne 3009 | . 2 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 10 | ig1pirred.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ DivRing) |
| 12 | ig1pirred.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ∈ (LIdeal‘𝑃)) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
| 15 | ig1pirred.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 16 | ig1pirred.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
| 17 | ig1pmindeg.o | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 19 | ig1pmindeg.d | . . . . . 6 ⊢ 𝐷 = (deg1‘𝑅) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 21 | 15, 16, 17, 18, 19, 20 | ig1pval3 26083 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ (LIdeal‘𝑃) ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 22 | 11, 13, 14, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 23 | 22 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
| 24 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑓(𝜑 ∧ 𝐼 ≠ { 0 }) | |
| 25 | ig1pirred.u | . . . . . . . 8 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 19, 15, 25 | deg1xrf 25986 | . . . . . . 7 ⊢ 𝐷:𝑈⟶ℝ* |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷:𝑈⟶ℝ*) |
| 28 | 27 | ffund 6692 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → Fun 𝐷) |
| 29 | 11 | drngringd 20646 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ Ring) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring) |
| 31 | 25, 18 | lidlss 21122 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (LIdeal‘𝑃) → 𝐼 ⊆ 𝑈) |
| 32 | 13, 31 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ⊆ 𝑈) |
| 33 | 32 | ssdifssd 4110 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ 𝑈) |
| 34 | 33 | sselda 3946 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ∈ 𝑈) |
| 35 | eldifsni 4754 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐼 ∖ { 0 }) → 𝑓 ≠ 0 ) | |
| 36 | 35 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ≠ 0 ) |
| 37 | 19, 15, 17, 25 | deg1nn0cl 25993 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑓 ≠ 0 ) → (𝐷‘𝑓) ∈ ℕ0) |
| 38 | 30, 34, 36, 37 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ ℕ0) |
| 39 | nn0uz 12835 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 40 | 38, 39 | eleqtrdi 2838 | . . . . 5 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ (ℤ≥‘0)) |
| 41 | 24, 28, 40 | funimassd 6927 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0)) |
| 42 | 27 | ffnd 6689 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷 Fn 𝑈) |
| 43 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝐼) |
| 44 | 32, 43 | sseldd 3947 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝑈) |
| 45 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ≠ 0 ) |
| 46 | nelsn 4630 | . . . . . . 7 ⊢ (𝐹 ≠ 0 → ¬ 𝐹 ∈ { 0 }) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐹 ∈ { 0 }) |
| 48 | 43, 47 | eldifd 3925 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ (𝐼 ∖ { 0 })) |
| 49 | 42, 44, 48 | fnfvimad 7208 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
| 50 | infssuzle 12890 | . . . 4 ⊢ (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0) ∧ (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) | |
| 51 | 41, 49, 50 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) |
| 52 | 23, 51 | eqbrtrd 5129 | . 2 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 53 | 9, 52 | pm2.61dane 3012 | 1 ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 class class class wbr 5107 “ cima 5641 ⟶wf 6507 ‘cfv 6511 infcinf 9392 ℝcr 11067 0cc0 11068 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕ0cn0 12442 ℤ≥cuz 12793 Basecbs 17179 0gc0g 17402 Ringcrg 20142 DivRingcdr 20638 LIdealclidl 21116 Poly1cpl1 22061 deg1cdg1 25959 Monic1pcmn1 26031 idlGen1pcig1p 26035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-drng 20640 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-cnfld 21265 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-mdeg 25960 df-deg1 25961 df-mon1 26036 df-uc1p 26037 df-ig1p 26040 |
| This theorem is referenced by: minplymindeg 33698 minplyirredlem 33700 irredminply 33706 |
| Copyright terms: Public domain | W3C validator |