| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ig1pmindeg | Structured version Visualization version GIF version | ||
| Description: The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ig1pirred.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ig1pirred.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
| ig1pirred.u | ⊢ 𝑈 = (Base‘𝑃) |
| ig1pirred.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| ig1pirred.1 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) |
| ig1pmindeg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ig1pmindeg.o | ⊢ 0 = (0g‘𝑃) |
| ig1pmindeg.2 | ⊢ (𝜑 → 𝐹 ∈ 𝐼) |
| ig1pmindeg.3 | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
| Ref | Expression |
|---|---|
| ig1pmindeg | ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ig1pmindeg.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐼) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ 𝐼) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐼 = { 0 }) | |
| 4 | 2, 3 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ { 0 }) |
| 5 | elsni 4594 | . . . 4 ⊢ (𝐹 ∈ { 0 } → 𝐹 = 0 ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 = 0 ) |
| 7 | ig1pmindeg.3 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ≠ 0 ) |
| 9 | 6, 8 | pm2.21ddne 3009 | . 2 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 10 | ig1pirred.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ DivRing) |
| 12 | ig1pirred.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ∈ (LIdeal‘𝑃)) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
| 15 | ig1pirred.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 16 | ig1pirred.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
| 17 | ig1pmindeg.o | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 19 | ig1pmindeg.d | . . . . . 6 ⊢ 𝐷 = (deg1‘𝑅) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 21 | 15, 16, 17, 18, 19, 20 | ig1pval3 26081 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ (LIdeal‘𝑃) ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 22 | 11, 13, 14, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 23 | 22 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
| 24 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑓(𝜑 ∧ 𝐼 ≠ { 0 }) | |
| 25 | ig1pirred.u | . . . . . . . 8 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 19, 15, 25 | deg1xrf 25984 | . . . . . . 7 ⊢ 𝐷:𝑈⟶ℝ* |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷:𝑈⟶ℝ*) |
| 28 | 27 | ffund 6656 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → Fun 𝐷) |
| 29 | 11 | drngringd 20622 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ Ring) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring) |
| 31 | 25, 18 | lidlss 21119 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (LIdeal‘𝑃) → 𝐼 ⊆ 𝑈) |
| 32 | 13, 31 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ⊆ 𝑈) |
| 33 | 32 | ssdifssd 4098 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ 𝑈) |
| 34 | 33 | sselda 3935 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ∈ 𝑈) |
| 35 | eldifsni 4741 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐼 ∖ { 0 }) → 𝑓 ≠ 0 ) | |
| 36 | 35 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ≠ 0 ) |
| 37 | 19, 15, 17, 25 | deg1nn0cl 25991 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑓 ≠ 0 ) → (𝐷‘𝑓) ∈ ℕ0) |
| 38 | 30, 34, 36, 37 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ ℕ0) |
| 39 | nn0uz 12777 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 40 | 38, 39 | eleqtrdi 2838 | . . . . 5 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ (ℤ≥‘0)) |
| 41 | 24, 28, 40 | funimassd 6889 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0)) |
| 42 | 27 | ffnd 6653 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷 Fn 𝑈) |
| 43 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝐼) |
| 44 | 32, 43 | sseldd 3936 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝑈) |
| 45 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ≠ 0 ) |
| 46 | nelsn 4618 | . . . . . . 7 ⊢ (𝐹 ≠ 0 → ¬ 𝐹 ∈ { 0 }) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐹 ∈ { 0 }) |
| 48 | 43, 47 | eldifd 3914 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ (𝐼 ∖ { 0 })) |
| 49 | 42, 44, 48 | fnfvimad 7170 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
| 50 | infssuzle 12832 | . . . 4 ⊢ (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0) ∧ (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) | |
| 51 | 41, 49, 50 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) |
| 52 | 23, 51 | eqbrtrd 5114 | . 2 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 53 | 9, 52 | pm2.61dane 3012 | 1 ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 class class class wbr 5092 “ cima 5622 ⟶wf 6478 ‘cfv 6482 infcinf 9331 ℝcr 11008 0cc0 11009 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℕ0cn0 12384 ℤ≥cuz 12735 Basecbs 17120 0gc0g 17343 Ringcrg 20118 DivRingcdr 20614 LIdealclidl 21113 Poly1cpl1 22059 deg1cdg1 25957 Monic1pcmn1 26029 idlGen1pcig1p 26033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-drng 20616 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-lidl 21115 df-cnfld 21262 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-mdeg 25958 df-deg1 25959 df-mon1 26034 df-uc1p 26035 df-ig1p 26038 |
| This theorem is referenced by: minplymindeg 33681 minplyirredlem 33683 irredminply 33689 |
| Copyright terms: Public domain | W3C validator |