| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ig1pmindeg | Structured version Visualization version GIF version | ||
| Description: The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ig1pirred.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ig1pirred.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
| ig1pirred.u | ⊢ 𝑈 = (Base‘𝑃) |
| ig1pirred.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| ig1pirred.1 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) |
| ig1pmindeg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ig1pmindeg.o | ⊢ 0 = (0g‘𝑃) |
| ig1pmindeg.2 | ⊢ (𝜑 → 𝐹 ∈ 𝐼) |
| ig1pmindeg.3 | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
| Ref | Expression |
|---|---|
| ig1pmindeg | ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ig1pmindeg.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐼) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ 𝐼) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐼 = { 0 }) | |
| 4 | 2, 3 | eleqtrd 2836 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ { 0 }) |
| 5 | elsni 4618 | . . . 4 ⊢ (𝐹 ∈ { 0 } → 𝐹 = 0 ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 = 0 ) |
| 7 | ig1pmindeg.3 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ≠ 0 ) |
| 9 | 6, 8 | pm2.21ddne 3016 | . 2 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 10 | ig1pirred.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ DivRing) |
| 12 | ig1pirred.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ∈ (LIdeal‘𝑃)) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
| 15 | ig1pirred.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 16 | ig1pirred.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
| 17 | ig1pmindeg.o | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
| 18 | eqid 2735 | . . . . . 6 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 19 | ig1pmindeg.d | . . . . . 6 ⊢ 𝐷 = (deg1‘𝑅) | |
| 20 | eqid 2735 | . . . . . 6 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 21 | 15, 16, 17, 18, 19, 20 | ig1pval3 26135 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ (LIdeal‘𝑃) ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 22 | 11, 13, 14, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 23 | 22 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
| 24 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑓(𝜑 ∧ 𝐼 ≠ { 0 }) | |
| 25 | ig1pirred.u | . . . . . . . 8 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 19, 15, 25 | deg1xrf 26038 | . . . . . . 7 ⊢ 𝐷:𝑈⟶ℝ* |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷:𝑈⟶ℝ*) |
| 28 | 27 | ffund 6710 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → Fun 𝐷) |
| 29 | 11 | drngringd 20697 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ Ring) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring) |
| 31 | 25, 18 | lidlss 21173 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (LIdeal‘𝑃) → 𝐼 ⊆ 𝑈) |
| 32 | 13, 31 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ⊆ 𝑈) |
| 33 | 32 | ssdifssd 4122 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ 𝑈) |
| 34 | 33 | sselda 3958 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ∈ 𝑈) |
| 35 | eldifsni 4766 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐼 ∖ { 0 }) → 𝑓 ≠ 0 ) | |
| 36 | 35 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ≠ 0 ) |
| 37 | 19, 15, 17, 25 | deg1nn0cl 26045 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑓 ≠ 0 ) → (𝐷‘𝑓) ∈ ℕ0) |
| 38 | 30, 34, 36, 37 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ ℕ0) |
| 39 | nn0uz 12894 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 40 | 38, 39 | eleqtrdi 2844 | . . . . 5 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ (ℤ≥‘0)) |
| 41 | 24, 28, 40 | funimassd 6945 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0)) |
| 42 | 27 | ffnd 6707 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷 Fn 𝑈) |
| 43 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝐼) |
| 44 | 32, 43 | sseldd 3959 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝑈) |
| 45 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ≠ 0 ) |
| 46 | nelsn 4642 | . . . . . . 7 ⊢ (𝐹 ≠ 0 → ¬ 𝐹 ∈ { 0 }) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐹 ∈ { 0 }) |
| 48 | 43, 47 | eldifd 3937 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ (𝐼 ∖ { 0 })) |
| 49 | 42, 44, 48 | fnfvimad 7226 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
| 50 | infssuzle 12947 | . . . 4 ⊢ (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0) ∧ (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) | |
| 51 | 41, 49, 50 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) |
| 52 | 23, 51 | eqbrtrd 5141 | . 2 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 53 | 9, 52 | pm2.61dane 3019 | 1 ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 class class class wbr 5119 “ cima 5657 ⟶wf 6527 ‘cfv 6531 infcinf 9453 ℝcr 11128 0cc0 11129 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 ℕ0cn0 12501 ℤ≥cuz 12852 Basecbs 17228 0gc0g 17453 Ringcrg 20193 DivRingcdr 20689 LIdealclidl 21167 Poly1cpl1 22112 deg1cdg1 26011 Monic1pcmn1 26083 idlGen1pcig1p 26087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-subrng 20506 df-subrg 20530 df-rlreg 20654 df-drng 20691 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-cnfld 21316 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-mdeg 26012 df-deg1 26013 df-mon1 26088 df-uc1p 26089 df-ig1p 26092 |
| This theorem is referenced by: minplymindeg 33742 minplyirredlem 33744 irredminply 33750 |
| Copyright terms: Public domain | W3C validator |