| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ig1pmindeg | Structured version Visualization version GIF version | ||
| Description: The polynomial ideal generator is of minimum degree. (Contributed by Thierry Arnoux, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| ig1pirred.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ig1pirred.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
| ig1pirred.u | ⊢ 𝑈 = (Base‘𝑃) |
| ig1pirred.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| ig1pirred.1 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) |
| ig1pmindeg.d | ⊢ 𝐷 = (deg1‘𝑅) |
| ig1pmindeg.o | ⊢ 0 = (0g‘𝑃) |
| ig1pmindeg.2 | ⊢ (𝜑 → 𝐹 ∈ 𝐼) |
| ig1pmindeg.3 | ⊢ (𝜑 → 𝐹 ≠ 0 ) |
| Ref | Expression |
|---|---|
| ig1pmindeg | ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ig1pmindeg.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝐼) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ 𝐼) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐼 = { 0 }) | |
| 4 | 2, 3 | eleqtrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ∈ { 0 }) |
| 5 | elsni 4609 | . . . 4 ⊢ (𝐹 ∈ { 0 } → 𝐹 = 0 ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 = 0 ) |
| 7 | ig1pmindeg.3 | . . . 4 ⊢ (𝜑 → 𝐹 ≠ 0 ) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → 𝐹 ≠ 0 ) |
| 9 | 6, 8 | pm2.21ddne 3010 | . 2 ⊢ ((𝜑 ∧ 𝐼 = { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 10 | ig1pirred.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ DivRing) |
| 12 | ig1pirred.1 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑃)) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ∈ (LIdeal‘𝑃)) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
| 15 | ig1pirred.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 16 | ig1pirred.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
| 17 | ig1pmindeg.o | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
| 18 | eqid 2730 | . . . . . 6 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 19 | ig1pmindeg.d | . . . . . 6 ⊢ 𝐷 = (deg1‘𝑅) | |
| 20 | eqid 2730 | . . . . . 6 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 21 | 15, 16, 17, 18, 19, 20 | ig1pval3 26090 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ (LIdeal‘𝑃) ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 22 | 11, 13, 14, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
| 23 | 22 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
| 24 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑓(𝜑 ∧ 𝐼 ≠ { 0 }) | |
| 25 | ig1pirred.u | . . . . . . . 8 ⊢ 𝑈 = (Base‘𝑃) | |
| 26 | 19, 15, 25 | deg1xrf 25993 | . . . . . . 7 ⊢ 𝐷:𝑈⟶ℝ* |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷:𝑈⟶ℝ*) |
| 28 | 27 | ffund 6695 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → Fun 𝐷) |
| 29 | 11 | drngringd 20653 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝑅 ∈ Ring) |
| 30 | 29 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑅 ∈ Ring) |
| 31 | 25, 18 | lidlss 21129 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (LIdeal‘𝑃) → 𝐼 ⊆ 𝑈) |
| 32 | 13, 31 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐼 ⊆ 𝑈) |
| 33 | 32 | ssdifssd 4113 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐼 ∖ { 0 }) ⊆ 𝑈) |
| 34 | 33 | sselda 3949 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ∈ 𝑈) |
| 35 | eldifsni 4757 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝐼 ∖ { 0 }) → 𝑓 ≠ 0 ) | |
| 36 | 35 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → 𝑓 ≠ 0 ) |
| 37 | 19, 15, 17, 25 | deg1nn0cl 26000 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝑈 ∧ 𝑓 ≠ 0 ) → (𝐷‘𝑓) ∈ ℕ0) |
| 38 | 30, 34, 36, 37 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ ℕ0) |
| 39 | nn0uz 12842 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 40 | 38, 39 | eleqtrdi 2839 | . . . . 5 ⊢ (((𝜑 ∧ 𝐼 ≠ { 0 }) ∧ 𝑓 ∈ (𝐼 ∖ { 0 })) → (𝐷‘𝑓) ∈ (ℤ≥‘0)) |
| 41 | 24, 28, 40 | funimassd 6930 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0)) |
| 42 | 27 | ffnd 6692 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐷 Fn 𝑈) |
| 43 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝐼) |
| 44 | 32, 43 | sseldd 3950 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ 𝑈) |
| 45 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ≠ 0 ) |
| 46 | nelsn 4633 | . . . . . . 7 ⊢ (𝐹 ≠ 0 → ¬ 𝐹 ∈ { 0 }) | |
| 47 | 45, 46 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐹 ∈ { 0 }) |
| 48 | 43, 47 | eldifd 3928 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → 𝐹 ∈ (𝐼 ∖ { 0 })) |
| 49 | 42, 44, 48 | fnfvimad 7211 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) |
| 50 | infssuzle 12897 | . . . 4 ⊢ (((𝐷 “ (𝐼 ∖ { 0 })) ⊆ (ℤ≥‘0) ∧ (𝐷‘𝐹) ∈ (𝐷 “ (𝐼 ∖ { 0 }))) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) | |
| 51 | 41, 49, 50 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ≤ (𝐷‘𝐹)) |
| 52 | 23, 51 | eqbrtrd 5132 | . 2 ⊢ ((𝜑 ∧ 𝐼 ≠ { 0 }) → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| 53 | 9, 52 | pm2.61dane 3013 | 1 ⊢ (𝜑 → (𝐷‘(𝐺‘𝐼)) ≤ (𝐷‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 class class class wbr 5110 “ cima 5644 ⟶wf 6510 ‘cfv 6514 infcinf 9399 ℝcr 11074 0cc0 11075 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℕ0cn0 12449 ℤ≥cuz 12800 Basecbs 17186 0gc0g 17409 Ringcrg 20149 DivRingcdr 20645 LIdealclidl 21123 Poly1cpl1 22068 deg1cdg1 25966 Monic1pcmn1 26038 idlGen1pcig1p 26042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-drng 20647 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-cnfld 21272 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-mdeg 25967 df-deg1 25968 df-mon1 26043 df-uc1p 26044 df-ig1p 26047 |
| This theorem is referenced by: minplymindeg 33705 minplyirredlem 33707 irredminply 33713 |
| Copyright terms: Public domain | W3C validator |