MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshashlem2 Structured version   Visualization version   GIF version

Theorem cshwshashlem2 16077
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwshashlem2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Distinct variable groups:   𝑖,𝐿   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖   𝑖,𝐾

Proof of Theorem cshwshashlem2
StepHypRef Expression
1 oveq1 6849 . . . . . . . 8 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)))
21eqcomd 2771 . . . . . . 7 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)))
32ad2antrr 717 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)))
4 cshwshash.0 . . . . . . . . . . 11 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
54simpld 488 . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑉)
65adantr 472 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → 𝑊 ∈ Word 𝑉)
76adantl 473 . . . . . . . 8 (((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) → 𝑊 ∈ Word 𝑉)
87adantr 472 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝑊 ∈ Word 𝑉)
9 elfzofz 12693 . . . . . . . . 9 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ (0...(♯‘𝑊)))
1093ad2ant2 1164 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 𝐾 ∈ (0...(♯‘𝑊)))
1110adantl 473 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝐾 ∈ (0...(♯‘𝑊)))
12 elfzofz 12693 . . . . . . . . . 10 (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊)))
13 fznn0sub2 12654 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
1412, 13syl 17 . . . . . . . . 9 (𝐿 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
15143ad2ant1 1163 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
1615adantl 473 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
17 elfzo0 12717 . . . . . . . . . . . 12 (𝐿 ∈ (0..^(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)))
18 zre 11628 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1918adantr 472 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → 𝐾 ∈ ℝ)
20 nnre 11282 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
21 nn0re 11548 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
22 resubcl 10599 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2320, 21, 22syl2anr 590 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2423adantl 473 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2519, 24readdcld 10323 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ)
2620adantl 473 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℝ)
2726adantl 473 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (♯‘𝑊) ∈ ℝ)
2825, 27jca 507 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
2928ex 401 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
30 elfzoelz 12678 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ)
3129, 30syl11 33 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
32313adant3 1162 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
3317, 32sylbi 208 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
3433imp 395 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
35343adant3 1162 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
36 fzonmapblen 12722 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊))
37 ltle 10380 . . . . . . . . 9 (((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)))
3835, 36, 37sylc 65 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))
3938adantl 473 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))
40 simpl 474 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 elfzelz 12549 . . . . . . . . . 10 (𝐾 ∈ (0...(♯‘𝑊)) → 𝐾 ∈ ℤ)
42413ad2ant1 1163 . . . . . . . . 9 ((𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)) → 𝐾 ∈ ℤ)
4342adantl 473 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → 𝐾 ∈ ℤ)
44 elfzelz 12549 . . . . . . . . . 10 (((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
45443ad2ant2 1164 . . . . . . . . 9 ((𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
4645adantl 473 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
47 2cshw 13842 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
4840, 43, 46, 47syl3anc 1490 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
498, 11, 16, 39, 48syl13anc 1491 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
50123ad2ant1 1163 . . . . . . 7 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 𝐿 ∈ (0...(♯‘𝑊)))
51 elfzelz 12549 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
52 2cshwid 13843 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
5351, 52sylan2 586 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
547, 50, 53syl2an 589 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
553, 49, 543eqtr3d 2807 . . . . 5 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) = 𝑊)
56 simplrl 795 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝜑)
57 simplrr 796 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
58 3simpa 1178 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ))
5917, 58sylbi 208 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ))
60 nnz 11646 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
61 nn0z 11647 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
62 zsubcl 11666 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
6360, 61, 62syl2anr 590 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
6463anim2i 610 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ))
6564ancoms 450 . . . . . . . . . . . 12 (((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ))
66 zaddcl 11664 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . 11 (((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐾 ∈ ℤ) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
6859, 30, 67syl2an 589 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
69683adant3 1162 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
70 elfzo0 12717 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝑊)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐾 < (♯‘𝑊)))
71 elnn0z 11637 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
7218ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 𝐾 ∈ ℝ)
73233adant3 1162 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
7473adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
75 simplr 785 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 ≤ 𝐾)
76 posdif 10775 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (𝐿 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 𝐿)))
7721, 20, 76syl2an 589 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐿 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 𝐿)))
7877biimp3a 1593 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < ((♯‘𝑊) − 𝐿))
7978adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 < ((♯‘𝑊) − 𝐿))
8072, 74, 75, 79addgegt0d 10855 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
8180ex 401 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8271, 81sylbi 208 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
83823ad2ant1 1163 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐾 < (♯‘𝑊)) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8470, 83sylbi 208 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8584com12 32 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8617, 85sylbi 208 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8786imp 395 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
88873adant3 1162 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
89 elnnz 11634 . . . . . . . . 9 ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ ↔ ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ ∧ 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
9069, 88, 89sylanbrc 578 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ)
9117simp2bi 1176 . . . . . . . . 9 (𝐿 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
92913ad2ant1 1163 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (♯‘𝑊) ∈ ℕ)
93 elfzo1 12726 . . . . . . . 8 ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)) ↔ ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊)))
9490, 92, 36, 93syl3anbrc 1443 . . . . . . 7 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)))
9594adantl 473 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)))
964cshwshashlem1 16076 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) ≠ 𝑊)
9756, 57, 95, 96syl3anc 1490 . . . . 5 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) ≠ 𝑊)
9855, 97pm2.21ddne 3021 . . . 4 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))
9998ex 401 . . 3 (((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
10099ex 401 . 2 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
101 2a1 28 . 2 ((𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
102100, 101pm2.61ine 3020 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cfv 6068  (class class class)co 6842  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cmin 10520  cn 11274  0cn0 11538  cz 11624  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486   cyclShift ccsh 13812  cprime 15665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13487  df-concat 13542  df-substr 13617  df-pfx 13662  df-reps 13793  df-csh 13814  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-dvds 15266  df-gcd 15498  df-prm 15666  df-phi 15750
This theorem is referenced by:  cshwshashlem3  16078
  Copyright terms: Public domain W3C validator